🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

Advancing urban water-energy demand predictions with a rotor hopfield neural network model optimized by contracted thermal exchange optimizer

人工神经网络 转子(电动) 热的 能量交换 计算机科学 环境科学 人工智能 工程类 气象学 地质学 机械工程 物理 大气科学
作者
Ziming Zhao,Milad Teimourian
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:46 (1): 6898-6921
标识
DOI:10.1080/15567036.2024.2357243
摘要

The relationship between urban water and energy demand is crucial for resource efficiency, sustainability, and environmental conservation. Rapid urbanization, population growth, and climate change necessitate integrated models that capture the complex interdependencies, feedback loops, and trade-offs between water and energy systems. This research addresses this intricate relationship by developing a modified Rotor Hopfield Neural Network (RHNN) Model using input indicators like population data, GDP, water consumption, precipitation, electricity consumption, wastewater discharge, and industrial coal usage. The model is optimized using a modified metaheuristic, called Contracted Thermal Exchange Optimizer (CTEO), resulting in a comprehensive forecast of urban water-energy demand. The model's superior efficiency is demonstrated by comparing it with other contemporary methods. Upon comparison with alternative approaches, it is clear that the RHNN/CTEO model surpasses them, showcasing a mean relative error of 1.47% for water usage and 2.60% for energy consumption. This leads to an overall average MRE of 2.03%. This research contributes to the existing body of knowledge by offering an advanced model for urban water-energy demand forecasting, providing valuable insights for policymakers, urban planners, and stakeholders in making informed decisions related to resource allocation, infrastructure development, and sustainable urban development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wuwuwu完成签到 ,获得积分10
刚刚
golden完成签到,获得积分10
1秒前
cyy1226完成签到,获得积分10
1秒前
win完成签到 ,获得积分10
3秒前
3秒前
pb完成签到 ,获得积分10
3秒前
有机分子笼完成签到,获得积分10
4秒前
赵田发布了新的文献求助10
4秒前
Orange应助杏子采纳,获得10
5秒前
机智灵薇完成签到,获得积分10
7秒前
Neo完成签到,获得积分10
8秒前
稳重的从灵完成签到,获得积分10
9秒前
雪泥鸿爪完成签到,获得积分20
9秒前
9秒前
9秒前
Hindiii完成签到,获得积分10
10秒前
圆球球完成签到 ,获得积分10
10秒前
彭于晏应助feng采纳,获得10
10秒前
研友_VZG7GZ应助wuhen采纳,获得10
12秒前
FashionBoy应助Splaink采纳,获得10
14秒前
luria完成签到,获得积分10
15秒前
16秒前
雪泥鸿爪发布了新的文献求助30
17秒前
纯真涵菱完成签到 ,获得积分10
18秒前
byyyy发布了新的文献求助10
19秒前
www发布了新的文献求助10
19秒前
但大图完成签到 ,获得积分10
20秒前
gy发布了新的文献求助30
21秒前
十三完成签到,获得积分10
21秒前
秦小狸完成签到 ,获得积分10
21秒前
斯文败类应助gdh采纳,获得10
21秒前
23秒前
23秒前
芬芬完成签到,获得积分10
23秒前
zzy完成签到 ,获得积分10
23秒前
伟立完成签到,获得积分10
24秒前
Ava应助曲奇饼干采纳,获得10
26秒前
26秒前
森林木完成签到,获得积分10
26秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
EEG in clinical practice 2nd edition 1994 600
Comprehensive Computational Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3604275
求助须知:如何正确求助?哪些是违规求助? 3172354
关于积分的说明 9573976
捐赠科研通 2878427
什么是DOI,文献DOI怎么找? 1580926
邀请新用户注册赠送积分活动 743285
科研通“疑难数据库(出版商)”最低求助积分说明 725901