硝酸
吸附
化学
分离(统计)
选择性吸附
色谱法
核化学
化学工程
无机化学
有机化学
数学
统计
工程类
作者
Chang Liu,Shi-Chang Zhang,Xinpeng Wang,Lifeng Chen,Xiangbiao Yin,Mohammed F. Hamza,Yuezhou Wei,Shunyan Ning
出处
期刊:Metals
[MDPI AG]
日期:2024-05-25
卷期号:14 (6): 627-627
摘要
Crown ethers are famous for the highly selectively grab Sr(II) from concentrated nitric acid solution due to the size match, but they suffer from the high leakage into the liquid phase caused by the presence of a large number of hydrophilic groups. To reduce their leakage, two novel porous silica-based adsorbents, (DtBuCH18C6 + Dodec)/SiAaC-g-ABSA and (DtBuCH18C6 + Dodec)/SiAaC-g-3-ABSA, were prepared by vacuum impregnation with organic contents of about 55.9 wt.% and 56.1 wt.%, respectively. The two adsorbents have good reusability and structural stability, and the total organic carbon leakage rates in 2 M HNO3 solution are lower than 0.56 wt.% and 0.29 wt.%, respectively. Batch adsorption experiments revealed that the two adsorbents possessed good adsorption selectivity towards Sr, with SFSr/M over 40, except that of SFSr/Ba in 2 M HNO3 solution. The adsorption equilibrium of Sr in 2 M HNO3 solution was reached within 1 h, with saturated adsorption capacities of 36.9 mg/g and 37.5 mg/g, respectively. Furthermore, the XPS results indicate that the adsorption mechanism is the coordination of the crown ether ring with Sr. This work not only develops two novel adsorbents for the separation of Sr in nitric acid environments; it also provides a method for effectively reducing the water solubility of crown ethers.
科研通智能强力驱动
Strongly Powered by AbleSci AI