DCAM-Net: A Rapid Detection Network for Strip Steel Surface Defects Based on Deformable Convolution and Attention Mechanism

特征(语言学) 卷积(计算机科学) 自适应直方图均衡化 直方图 人工智能 计算机科学 棱锥(几何) 特征提取 块(置换群论) 对比度(视觉) 联营 计算机视觉 卷积神经网络 模式识别(心理学) 算法 人工神经网络 数学 几何学 直方图均衡化 图像(数学) 哲学 语言学
作者
Haixin Chen,Yongzhao Du,Yuqing Fu,Jianqing Zhu,Huanqiang Zeng
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:65
标识
DOI:10.1109/tim.2023.3238698
摘要

Strip steel surface defect detection is a critical step in the production field of the steel industry and a vital guarantee to improve the quality of strip steel production. However, due to the poor contrast of the strip steel surface defect images, the diversity of defect types, scales, texture structures, and the irregular distribution of defects, it is difficult to achieve rapid and accurate detection of strip steel surface defects with the existing methods. In this article, a rapid detection network for strip steel surface defects based on deformable convolution and attention mechanism (DCAM-Net) is proposed. First, we introduce contrast limited adaptive histogram equalization (CLAHE) as a data augmentation method to improve the contrast of the defect image and highlight the defect feature on the strip steel surface images. Second, we propose a novel enhanced deformation-feature extraction block (EDE-block) for various complex and irregularly distributed strip steel defects. By fusing deformable convolution, the receptive field of the defect feature extraction network is expanded to capture complete and comprehensive defect texture features. Finally, we introduce the coordination attention (CA) module to replace the backbone network's spatial pyramid pooling (SPP) structure, which further factorizes the pooling operation and effectively improves the network's ability to locate defects. The experimental results on the NEU-DET dataset showed that the mean Average Precision (mAP@IoU $=0.5$ ) of the proposed algorithm is 82.6%, which is 7.3% higher than the baseline network, and the detection speed is up to 100.2 fps, which effectively improves the detection efficiency of surface defects of strip steel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盒子先生完成签到,获得积分10
刚刚
星辰完成签到,获得积分10
1秒前
Frank发布了新的文献求助10
1秒前
2秒前
2秒前
cetomacrogol完成签到,获得积分10
4秒前
4秒前
Hello应助菜头采纳,获得10
5秒前
善学以致用应助欢呼的井采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
流光广陵应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得30
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
7秒前
SIDEsss应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
SIDEsss应助科研通管家采纳,获得10
8秒前
8秒前
火星人发布了新的文献求助10
8秒前
luxkex完成签到,获得积分10
8秒前
8秒前
范东乐发布了新的文献求助10
8秒前
希望天下0贩的0应助Swallow采纳,获得10
8秒前
qinqiny完成签到 ,获得积分10
8秒前
Xiaoxin_Ju完成签到,获得积分10
9秒前
kp完成签到,获得积分10
9秒前
Jasper应助曲书文采纳,获得10
9秒前
hhj02发布了新的文献求助10
9秒前
李爱国应助高高的魔镜采纳,获得10
10秒前
bobo完成签到,获得积分10
10秒前
Orange应助reap采纳,获得10
10秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773842
求助须知:如何正确求助?哪些是违规求助? 3319455
关于积分的说明 10195161
捐赠科研通 3034050
什么是DOI,文献DOI怎么找? 1664925
邀请新用户注册赠送积分活动 796399
科研通“疑难数据库(出版商)”最低求助积分说明 757443