Early identification of strawberry leaves disease utilizing hyperspectral imaging combing with spectral features, multiple vegetation indices and textural features

高光谱成像 支持向量机 特征选择 极限学习机 灰度级 模式识别(心理学) 人工智能 计算机视觉 数学 像素 计算机科学 人工神经网络
作者
Gangshan Wu,Yinlong Fang,Qiyou Jiang,Ming Cui,Na Li,Yunmeng Ou,Zhihua Diao,Baohua Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107553-107553 被引量:84
标识
DOI:10.1016/j.compag.2022.107553
摘要

Gray mold is a devastating disease during the growth of strawberries, which markedly affects strawberry yield and quality. Accurate, rapid, and nondestructive recognition in the early phase of the disease is important for strawberry production management. This study focused on the potential of using hyperspectral imaging (HSI) combined with spectral features, vegetation indices (VIs), and textural features (TFs) for the detection of gray mold on strawberry leaves. First, hyperspectral images of healthy and 24-h infected leaves were collected using a HSI system. Subsequently, the preprocessed hyperspectral images were utilized to extract the spectral features and VIs. TFs were acquired from the images using a grey-level co-occurrence matrix (GLCM). Third, competitive adaptive reweighted sampling (CARS) was performed to select the optimum wavelengths (OWs), ReliefF was employed to select significant VIs, and correlation-based feature selection was used to select the effective TFs. Finally, three machine learning models (extreme learning machine (ELM), support vector machine (SVM), and K-nearest Neighbor (KNN)) of strawberry gray mold were developed based on OWs, significant VIs, effective TFs, and fusion features. The results demonstrated that the models based on OWs and significant VIs performed well, with their highest classification accuracy reaching 93.33%. Although the model based on selected TFs performed slightly worse, the results presented on disease detection by TFs are encouraging for further studies. The performance of the models with combined features was better than those based on single features, with an accuracy range of 93.33–96.67%. Overall, the combined feature-based method significantly improved the recognition accuracy of strawberry gray mold and could accurately identify infected leaves in the early stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1a完成签到 ,获得积分10
1秒前
青山绿水完成签到,获得积分10
2秒前
wave8013发布了新的文献求助10
4秒前
8秒前
10秒前
marc107完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
当女遇到乔完成签到 ,获得积分10
13秒前
牛马完成签到 ,获得积分10
14秒前
wuju完成签到,获得积分10
15秒前
pia叽完成签到 ,获得积分10
18秒前
chenxilulu完成签到,获得积分10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
梅特卡夫完成签到,获得积分10
19秒前
19秒前
anzhe完成签到,获得积分10
21秒前
23秒前
犹豫的行恶应助雪山飞龙采纳,获得10
25秒前
三石完成签到 ,获得积分10
26秒前
鲤鱼忆霜发布了新的文献求助10
26秒前
四叶草完成签到 ,获得积分10
28秒前
Greg完成签到,获得积分10
28秒前
碗碗豆喵完成签到 ,获得积分10
30秒前
韭菜盒子完成签到,获得积分10
31秒前
潘啊潘完成签到 ,获得积分10
32秒前
量子星尘发布了新的文献求助10
33秒前
34秒前
北地风情完成签到 ,获得积分10
35秒前
激流勇进wb完成签到 ,获得积分10
36秒前
科研通AI6应助zinan采纳,获得10
37秒前
guoxingliu完成签到,获得积分10
38秒前
那都通完成签到,获得积分10
41秒前
wave8013完成签到,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671559
求助须知:如何正确求助?哪些是违规求助? 4919724
关于积分的说明 15134997
捐赠科研通 4830375
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540671
关于科研通互助平台的介绍 1498971