已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Early identification of strawberry leaves disease utilizing hyperspectral imaging combing with spectral features, multiple vegetation indices and textural features

高光谱成像 支持向量机 特征选择 极限学习机 灰度级 模式识别(心理学) 人工智能 计算机视觉 数学 像素 计算机科学 人工神经网络
作者
Gangshan Wu,Yinlong Fang,Qiyou Jiang,Ming Cui,Na Li,Yunmeng Ou,Zhihua Diao,Baohua Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107553-107553 被引量:51
标识
DOI:10.1016/j.compag.2022.107553
摘要

Gray mold is a devastating disease during the growth of strawberries, which markedly affects strawberry yield and quality. Accurate, rapid, and nondestructive recognition in the early phase of the disease is important for strawberry production management. This study focused on the potential of using hyperspectral imaging (HSI) combined with spectral features, vegetation indices (VIs), and textural features (TFs) for the detection of gray mold on strawberry leaves. First, hyperspectral images of healthy and 24-h infected leaves were collected using a HSI system. Subsequently, the preprocessed hyperspectral images were utilized to extract the spectral features and VIs. TFs were acquired from the images using a grey-level co-occurrence matrix (GLCM). Third, competitive adaptive reweighted sampling (CARS) was performed to select the optimum wavelengths (OWs), ReliefF was employed to select significant VIs, and correlation-based feature selection was used to select the effective TFs. Finally, three machine learning models (extreme learning machine (ELM), support vector machine (SVM), and K-nearest Neighbor (KNN)) of strawberry gray mold were developed based on OWs, significant VIs, effective TFs, and fusion features. The results demonstrated that the models based on OWs and significant VIs performed well, with their highest classification accuracy reaching 93.33%. Although the model based on selected TFs performed slightly worse, the results presented on disease detection by TFs are encouraging for further studies. The performance of the models with combined features was better than those based on single features, with an accuracy range of 93.33–96.67%. Overall, the combined feature-based method significantly improved the recognition accuracy of strawberry gray mold and could accurately identify infected leaves in the early stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Yw_M发布了新的文献求助10
4秒前
善学以致用应助123采纳,获得10
6秒前
8秒前
9秒前
Lucas应助可爱怀莲采纳,获得10
10秒前
14秒前
16秒前
16秒前
17秒前
周周发布了新的文献求助10
20秒前
123发布了新的文献求助10
20秒前
可爱怀莲发布了新的文献求助10
22秒前
22秒前
郭盾发布了新的文献求助10
23秒前
23秒前
不配.应助欣喜尔蝶采纳,获得10
25秒前
我我我发布了新的文献求助10
26秒前
领导范儿应助周周采纳,获得10
27秒前
英俊的铭应助郭盾采纳,获得30
28秒前
xiaoming应助科研通管家采纳,获得10
28秒前
酷波er应助科研通管家采纳,获得10
28秒前
大个应助科研通管家采纳,获得10
28秒前
思源应助科研通管家采纳,获得10
28秒前
NexusExplorer应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
明亮萤发布了新的文献求助10
29秒前
可爱怀莲完成签到,获得积分10
34秒前
36秒前
38秒前
乐乐应助打地鼠工人采纳,获得10
39秒前
adearfish完成签到 ,获得积分10
39秒前
兮pqsn发布了新的文献求助10
41秒前
11发布了新的文献求助10
42秒前
鲜于元龙发布了新的文献求助10
43秒前
万能图书馆应助hiufo采纳,获得10
46秒前
NexusExplorer应助an采纳,获得10
48秒前
51秒前
个性跳跳糖完成签到,获得积分10
53秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136894
求助须知:如何正确求助?哪些是违规求助? 2787866
关于积分的说明 7783497
捐赠科研通 2443945
什么是DOI,文献DOI怎么找? 1299488
科研通“疑难数据库(出版商)”最低求助积分说明 625461
版权声明 600954