Early identification of strawberry leaves disease utilizing hyperspectral imaging combing with spectral features, multiple vegetation indices and textural features

高光谱成像 支持向量机 特征选择 极限学习机 灰度级 模式识别(心理学) 人工智能 计算机视觉 数学 像素 计算机科学 人工神经网络
作者
Gangshan Wu,Yinlong Fang,Qiyou Jiang,Ming Cui,Na Li,Yunmeng Ou,Zhihua Diao,Baohua Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:204: 107553-107553 被引量:51
标识
DOI:10.1016/j.compag.2022.107553
摘要

Gray mold is a devastating disease during the growth of strawberries, which markedly affects strawberry yield and quality. Accurate, rapid, and nondestructive recognition in the early phase of the disease is important for strawberry production management. This study focused on the potential of using hyperspectral imaging (HSI) combined with spectral features, vegetation indices (VIs), and textural features (TFs) for the detection of gray mold on strawberry leaves. First, hyperspectral images of healthy and 24-h infected leaves were collected using a HSI system. Subsequently, the preprocessed hyperspectral images were utilized to extract the spectral features and VIs. TFs were acquired from the images using a grey-level co-occurrence matrix (GLCM). Third, competitive adaptive reweighted sampling (CARS) was performed to select the optimum wavelengths (OWs), ReliefF was employed to select significant VIs, and correlation-based feature selection was used to select the effective TFs. Finally, three machine learning models (extreme learning machine (ELM), support vector machine (SVM), and K-nearest Neighbor (KNN)) of strawberry gray mold were developed based on OWs, significant VIs, effective TFs, and fusion features. The results demonstrated that the models based on OWs and significant VIs performed well, with their highest classification accuracy reaching 93.33%. Although the model based on selected TFs performed slightly worse, the results presented on disease detection by TFs are encouraging for further studies. The performance of the models with combined features was better than those based on single features, with an accuracy range of 93.33–96.67%. Overall, the combined feature-based method significantly improved the recognition accuracy of strawberry gray mold and could accurately identify infected leaves in the early stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
pineapple yang完成签到,获得积分10
1秒前
qweasdzxcqwe发布了新的文献求助10
1秒前
namin完成签到,获得积分10
2秒前
rico完成签到,获得积分10
2秒前
顺顺安完成签到,获得积分10
2秒前
a水爱科研发布了新的文献求助10
3秒前
橙子才是唯一的水果完成签到,获得积分10
3秒前
hongw_liu完成签到,获得积分10
3秒前
烩面大师发布了新的文献求助10
5秒前
北欧海盗完成签到,获得积分10
5秒前
赘婿应助如初采纳,获得10
6秒前
lmy完成签到 ,获得积分10
6秒前
靓丽安珊完成签到,获得积分10
6秒前
orixero应助勤恳的从波采纳,获得10
7秒前
hayden发布了新的文献求助10
8秒前
1234hai发布了新的文献求助10
8秒前
8秒前
鹿七七啊完成签到 ,获得积分10
8秒前
jojodan应助大大怪采纳,获得10
8秒前
fmd123发布了新的文献求助10
9秒前
可爱的函函应助sonder采纳,获得10
9秒前
10秒前
xingyi发布了新的文献求助10
10秒前
祖f完成签到,获得积分10
11秒前
ChengYonghui完成签到,获得积分10
11秒前
所所应助kkk采纳,获得10
11秒前
11秒前
boltos完成签到,获得积分10
11秒前
彭于彦祖应助liars采纳,获得30
12秒前
12秒前
范范范发布了新的文献求助10
13秒前
脑洞疼应助qweasdzxcqwe采纳,获得30
13秒前
13秒前
思苇完成签到,获得积分10
13秒前
14秒前
飘逸秋荷发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600