计算机科学
生物标志物
数字化病理学
免疫组织化学
H&E染色
医学诊断
金标准(测试)
人工智能
可视化
污渍
渲染(计算机图形)
分割
计算机视觉
染色
模式识别(心理学)
病理
放射科
医学
生物
生物化学
作者
Wei Zhao,Bozhao Qi,Yichen Li,Roger Trullo,Elham Attieh,Anne-Laure Bauchet,Qi Tang,Etienne Pochet
标识
DOI:10.1007/978-3-031-47076-9_1
摘要
The gold standard for diagnosing cancer is through pathological examination. This typically involves the utilization of staining techniques such as hematoxylin-eosin (H &E) and immunohistochemistry (IHC) as relying solely on H &E can sometimes result in inaccurate cancer diagnoses. IHC examination offers additional evidence to support the diagnostic process. Given challenging accessibility issues of IHC examination, generating virtual IHC images from H &E-stained images presents a viable solution. This study proposes Active Medical Segmentation and Rendering (AMSR), an end-to-end framework for biomarker expression levels prediction and virtual staining, leveraging constrained Generative Adversarial Networks (GAN). The proposed framework mimics the staining processes, surpassing prior works and offering a feasible substitute for traditional histopathology methods. Preliminary results are presented using a clinical trial dataset pertaining to the CEACAM5 biomarker.
科研通智能强力驱动
Strongly Powered by AbleSci AI