Data fusion of FT-NIR and ATR-FTIR spectra for accurate authentication of geographical indications for Gastrodia elata Blume

天麻 模式识别(心理学) 指纹(计算) 人工智能 数学 残余物 线性判别分析 预处理器 计算机科学 生物系统 化学 分析化学(期刊) 生物 色谱法 算法 医学 病理 中医药 替代医学
作者
Chuanmao Zheng,Jieqing Li,Honggao Liu,Yuanzhong Wang
出处
期刊:Food bioscience [Elsevier]
卷期号:56: 103308-103308 被引量:17
标识
DOI:10.1016/j.fbio.2023.103308
摘要

Gastrodia elata Blume (G. elata Bl.), with its excellent nutritional and medicinal value from Zhaotong, has been protected by geographical indication (GI). Accurate certification of its origin is a prerequisite to safeguard consumer interests and maintain the market. Four different regions and three varieties of G. elata Bl. from Zhaotong were used in this study (n = 262). Tri-step infrared spectroscopy was used for ATR-FTIR spectral analysis to filter out fingerprint regions for data fusion with FT-NIR spectra, after which conventional discriminant models (PLS-DA and GS-SVM) were built. The second derivative (SD), multiple scattering correction (MSC), and Savitzky-Golay (SG) preprocessing were also performed on the spectra, and it was found that the preprocessing improved the performance of the PLS-DA model. The optimal model results in GS-SVM, based on mid-level data fusion of principal components (PCs) and latent variables (LVs), with sensitivity, specificity, accuracy, and Matthews correlation coefficient (MCC) of 1 for the test set. Furthermore, the residual convolutional neural network (ResNet) models were built, based on FT-NIR full spectra, band 3600−2700 cm−1 (MFA) and band 1750−500 cm−1 (MFB). Their accuracy in both train and test sets exceeds 97%, and the loss function curve is close to 0, which indicates that these three bands can be used as a fingerprint area to verify the GI of Zhaotong G. elata Bl. This study provides a fast, non-invasive method for the authentication of food or medicinal plant GI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
火星上初翠完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
高万完成签到,获得积分10
2秒前
小谭应助Mr采纳,获得10
2秒前
xa应助hanchangcun采纳,获得10
3秒前
3秒前
帕斯特普罗完成签到 ,获得积分20
4秒前
Estrella完成签到,获得积分10
4秒前
wanci应助platanus采纳,获得10
5秒前
5秒前
7秒前
郑匕发布了新的文献求助10
7秒前
23211151760应助嘻嘻采纳,获得20
8秒前
超超完成签到,获得积分10
9秒前
9秒前
华仔应助忐忑的傲菡采纳,获得10
9秒前
雨水完成签到,获得积分10
9秒前
tan完成签到,获得积分10
10秒前
无花果应助Joy采纳,获得10
12秒前
enchanted完成签到,获得积分10
12秒前
liu完成签到,获得积分20
13秒前
晓先生发布了新的文献求助10
13秒前
14秒前
LIU完成签到,获得积分10
15秒前
hanchangcun完成签到,获得积分10
16秒前
无名老大应助overThat采纳,获得50
17秒前
18秒前
疯狂的溪灵完成签到,获得积分10
20秒前
wanci应助开心的渊思采纳,获得10
21秒前
21秒前
Akim应助火花火王采纳,获得10
21秒前
FENGHUI发布了新的文献求助30
21秒前
platanus完成签到,获得积分10
22秒前
温柔的蛋挞完成签到,获得积分10
25秒前
摆烂发布了新的文献求助10
25秒前
hipig完成签到 ,获得积分10
25秒前
阿蒙完成签到,获得积分10
26秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328053
求助须知:如何正确求助?哪些是违规求助? 2958192
关于积分的说明 8589449
捐赠科研通 2636443
什么是DOI,文献DOI怎么找? 1442995
科研通“疑难数据库(出版商)”最低求助积分说明 668470
邀请新用户注册赠送积分活动 655696