Data fusion of FT-NIR and ATR-FTIR spectra for accurate authentication of geographical indications for Gastrodia elata Blume

天麻 模式识别(心理学) 指纹(计算) 人工智能 数学 残余物 线性判别分析 预处理器 计算机科学 生物系统 化学 分析化学(期刊) 生物 色谱法 算法 医学 替代医学 病理 中医药
作者
Chuanmao Zheng,Jieqing Li,Honggao Liu,Yuanzhong Wang
出处
期刊:Food bioscience [Elsevier]
卷期号:56: 103308-103308 被引量:29
标识
DOI:10.1016/j.fbio.2023.103308
摘要

Gastrodia elata Blume (G. elata Bl.), with its excellent nutritional and medicinal value from Zhaotong, has been protected by geographical indication (GI). Accurate certification of its origin is a prerequisite to safeguard consumer interests and maintain the market. Four different regions and three varieties of G. elata Bl. from Zhaotong were used in this study (n = 262). Tri-step infrared spectroscopy was used for ATR-FTIR spectral analysis to filter out fingerprint regions for data fusion with FT-NIR spectra, after which conventional discriminant models (PLS-DA and GS-SVM) were built. The second derivative (SD), multiple scattering correction (MSC), and Savitzky-Golay (SG) preprocessing were also performed on the spectra, and it was found that the preprocessing improved the performance of the PLS-DA model. The optimal model results in GS-SVM, based on mid-level data fusion of principal components (PCs) and latent variables (LVs), with sensitivity, specificity, accuracy, and Matthews correlation coefficient (MCC) of 1 for the test set. Furthermore, the residual convolutional neural network (ResNet) models were built, based on FT-NIR full spectra, band 3600−2700 cm−1 (MFA) and band 1750−500 cm−1 (MFB). Their accuracy in both train and test sets exceeds 97%, and the loss function curve is close to 0, which indicates that these three bands can be used as a fingerprint area to verify the GI of Zhaotong G. elata Bl. This study provides a fast, non-invasive method for the authentication of food or medicinal plant GI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阳光的伊发布了新的文献求助10
1秒前
浮游应助曹能豪采纳,获得10
2秒前
2秒前
2秒前
小二郎应助文艺明杰采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
Gauss应助科研通管家采纳,获得30
2秒前
Gauss应助科研通管家采纳,获得30
2秒前
烟花应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
狗头发布了新的文献求助30
4秒前
xuleiman发布了新的文献求助10
4秒前
溫蒂完成签到,获得积分10
4秒前
Joy完成签到 ,获得积分10
5秒前
6秒前
6秒前
NexusExplorer应助郁匪采纳,获得10
6秒前
7秒前
天选牛马人完成签到,获得积分10
7秒前
00完成签到 ,获得积分10
7秒前
杜智敏发布了新的文献求助10
7秒前
123完成签到 ,获得积分10
7秒前
8秒前
细心青烟发布了新的文献求助10
8秒前
曹能豪完成签到,获得积分10
9秒前
9秒前
ASDS完成签到,获得积分10
9秒前
9秒前
凡夫俗子完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
桐桐应助三谷采纳,获得10
11秒前
12秒前
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508769
求助须知:如何正确求助?哪些是违规求助? 4603814
关于积分的说明 14487899
捐赠科研通 4538341
什么是DOI,文献DOI怎么找? 2486923
邀请新用户注册赠送积分活动 1469458
关于科研通互助平台的介绍 1441678