Data fusion of FT-NIR and ATR-FTIR spectra for accurate authentication of geographical indications for Gastrodia elata Blume

天麻 模式识别(心理学) 指纹(计算) 人工智能 数学 残余物 线性判别分析 预处理器 计算机科学 生物系统 化学 分析化学(期刊) 生物 色谱法 算法 医学 替代医学 病理 中医药
作者
Chuanmao Zheng,Jieqing Li,Honggao Liu,Yuanzhong Wang
出处
期刊:Food bioscience [Elsevier]
卷期号:56: 103308-103308 被引量:29
标识
DOI:10.1016/j.fbio.2023.103308
摘要

Gastrodia elata Blume (G. elata Bl.), with its excellent nutritional and medicinal value from Zhaotong, has been protected by geographical indication (GI). Accurate certification of its origin is a prerequisite to safeguard consumer interests and maintain the market. Four different regions and three varieties of G. elata Bl. from Zhaotong were used in this study (n = 262). Tri-step infrared spectroscopy was used for ATR-FTIR spectral analysis to filter out fingerprint regions for data fusion with FT-NIR spectra, after which conventional discriminant models (PLS-DA and GS-SVM) were built. The second derivative (SD), multiple scattering correction (MSC), and Savitzky-Golay (SG) preprocessing were also performed on the spectra, and it was found that the preprocessing improved the performance of the PLS-DA model. The optimal model results in GS-SVM, based on mid-level data fusion of principal components (PCs) and latent variables (LVs), with sensitivity, specificity, accuracy, and Matthews correlation coefficient (MCC) of 1 for the test set. Furthermore, the residual convolutional neural network (ResNet) models were built, based on FT-NIR full spectra, band 3600−2700 cm−1 (MFA) and band 1750−500 cm−1 (MFB). Their accuracy in both train and test sets exceeds 97%, and the loss function curve is close to 0, which indicates that these three bands can be used as a fingerprint area to verify the GI of Zhaotong G. elata Bl. This study provides a fast, non-invasive method for the authentication of food or medicinal plant GI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助xirang2采纳,获得10
刚刚
Orange应助倩Q采纳,获得10
1秒前
高贵的水杯完成签到,获得积分10
1秒前
1秒前
852应助开放穆采纳,获得10
1秒前
2秒前
自觉的流沙完成签到,获得积分10
2秒前
2秒前
小二郎应助李明月采纳,获得10
2秒前
3秒前
copper完成签到,获得积分10
3秒前
mhr完成签到,获得积分20
3秒前
彩色的访天完成签到,获得积分10
3秒前
4秒前
在水一方应助Dave采纳,获得10
4秒前
顺利的雪莲完成签到 ,获得积分10
5秒前
Benjamin发布了新的文献求助10
5秒前
5秒前
晚星完成签到,获得积分10
5秒前
无无无发布了新的文献求助10
6秒前
热情嘉懿发布了新的文献求助10
6秒前
可爱的函函应助陈晚拧采纳,获得10
6秒前
pmeng发布了新的文献求助10
6秒前
醉熏的书易关注了科研通微信公众号
7秒前
付银薇完成签到,获得积分10
7秒前
田様应助Chenchuanpeng采纳,获得10
8秒前
帆帆牛完成签到,获得积分10
8秒前
陈叉叉完成签到 ,获得积分10
8秒前
WN完成签到,获得积分10
8秒前
8秒前
张萌洁发布了新的文献求助10
9秒前
9秒前
YoKo完成签到,获得积分10
9秒前
候鸟发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
科研通AI6应助王楠楠采纳,获得10
11秒前
cai完成签到,获得积分10
11秒前
Mmmmmm完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660714
求助须知:如何正确求助?哪些是违规求助? 4835349
关于积分的说明 15091772
捐赠科研通 4819287
什么是DOI,文献DOI怎么找? 2579203
邀请新用户注册赠送积分活动 1533686
关于科研通互助平台的介绍 1492503