亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data fusion of FT-NIR and ATR-FTIR spectra for accurate authentication of geographical indications for Gastrodia elata Blume

天麻 模式识别(心理学) 指纹(计算) 人工智能 数学 残余物 线性判别分析 预处理器 计算机科学 生物系统 化学 分析化学(期刊) 生物 色谱法 算法 医学 替代医学 病理 中医药
作者
Chuanmao Zheng,Jieqing Li,Honggao Liu,Yuanzhong Wang
出处
期刊:Food bioscience [Elsevier]
卷期号:56: 103308-103308 被引量:29
标识
DOI:10.1016/j.fbio.2023.103308
摘要

Gastrodia elata Blume (G. elata Bl.), with its excellent nutritional and medicinal value from Zhaotong, has been protected by geographical indication (GI). Accurate certification of its origin is a prerequisite to safeguard consumer interests and maintain the market. Four different regions and three varieties of G. elata Bl. from Zhaotong were used in this study (n = 262). Tri-step infrared spectroscopy was used for ATR-FTIR spectral analysis to filter out fingerprint regions for data fusion with FT-NIR spectra, after which conventional discriminant models (PLS-DA and GS-SVM) were built. The second derivative (SD), multiple scattering correction (MSC), and Savitzky-Golay (SG) preprocessing were also performed on the spectra, and it was found that the preprocessing improved the performance of the PLS-DA model. The optimal model results in GS-SVM, based on mid-level data fusion of principal components (PCs) and latent variables (LVs), with sensitivity, specificity, accuracy, and Matthews correlation coefficient (MCC) of 1 for the test set. Furthermore, the residual convolutional neural network (ResNet) models were built, based on FT-NIR full spectra, band 3600−2700 cm−1 (MFA) and band 1750−500 cm−1 (MFB). Their accuracy in both train and test sets exceeds 97%, and the loss function curve is close to 0, which indicates that these three bands can be used as a fingerprint area to verify the GI of Zhaotong G. elata Bl. This study provides a fast, non-invasive method for the authentication of food or medicinal plant GI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cast_Lappland发布了新的文献求助10
刚刚
6秒前
Cast_Lappland完成签到,获得积分10
6秒前
早川完成签到,获得积分10
34秒前
34秒前
科研通AI2S应助魏欣娜采纳,获得10
36秒前
可爱的函函应助早川采纳,获得10
42秒前
馍夹菜完成签到,获得积分10
42秒前
46秒前
1分钟前
Vivian发布了新的文献求助30
1分钟前
Fox完成签到,获得积分10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
1分钟前
维颖完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
zhvjdb发布了新的文献求助10
1分钟前
Raju发布了新的文献求助100
1分钟前
英姑应助lpy李采纳,获得10
1分钟前
1分钟前
zhvjdb完成签到,获得积分10
1分钟前
Yuuw发布了新的文献求助10
1分钟前
bastien驳回了xxfsx应助
1分钟前
1分钟前
1分钟前
Huzhu应助魏欣娜采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
Yuuw完成签到,获得积分10
2分钟前
2分钟前
Sherry发布了新的文献求助20
2分钟前
充电宝应助青柠采纳,获得10
2分钟前
科研通AI2S应助魏欣娜采纳,获得10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482307
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388883
捐赠科研通 4512205
什么是DOI,文献DOI怎么找? 2472753
邀请新用户注册赠送积分活动 1459020
关于科研通互助平台的介绍 1432430