Data fusion of FT-NIR and ATR-FTIR spectra for accurate authentication of geographical indications for Gastrodia elata Blume

天麻 模式识别(心理学) 指纹(计算) 人工智能 数学 残余物 线性判别分析 预处理器 计算机科学 生物系统 化学 分析化学(期刊) 生物 色谱法 算法 医学 病理 中医药 替代医学
作者
Chuanmao Zheng,Jieqing Li,Honggao Liu,Yuanzhong Wang
出处
期刊:Food bioscience [Elsevier]
卷期号:56: 103308-103308 被引量:23
标识
DOI:10.1016/j.fbio.2023.103308
摘要

Gastrodia elata Blume (G. elata Bl.), with its excellent nutritional and medicinal value from Zhaotong, has been protected by geographical indication (GI). Accurate certification of its origin is a prerequisite to safeguard consumer interests and maintain the market. Four different regions and three varieties of G. elata Bl. from Zhaotong were used in this study (n = 262). Tri-step infrared spectroscopy was used for ATR-FTIR spectral analysis to filter out fingerprint regions for data fusion with FT-NIR spectra, after which conventional discriminant models (PLS-DA and GS-SVM) were built. The second derivative (SD), multiple scattering correction (MSC), and Savitzky-Golay (SG) preprocessing were also performed on the spectra, and it was found that the preprocessing improved the performance of the PLS-DA model. The optimal model results in GS-SVM, based on mid-level data fusion of principal components (PCs) and latent variables (LVs), with sensitivity, specificity, accuracy, and Matthews correlation coefficient (MCC) of 1 for the test set. Furthermore, the residual convolutional neural network (ResNet) models were built, based on FT-NIR full spectra, band 3600−2700 cm−1 (MFA) and band 1750−500 cm−1 (MFB). Their accuracy in both train and test sets exceeds 97%, and the loss function curve is close to 0, which indicates that these three bands can be used as a fingerprint area to verify the GI of Zhaotong G. elata Bl. This study provides a fast, non-invasive method for the authentication of food or medicinal plant GI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
11完成签到,获得积分10
2秒前
1111完成签到,获得积分10
2秒前
777完成签到,获得积分10
3秒前
junzilan发布了新的文献求助10
3秒前
3秒前
sun应助leave采纳,获得20
3秒前
3秒前
4秒前
4秒前
Loooong应助小房子采纳,获得10
5秒前
5秒前
云_123完成签到,获得积分10
6秒前
hf发布了新的文献求助10
6秒前
6秒前
赫连烙完成签到,获得积分10
6秒前
小二郎应助整齐小猫咪采纳,获得10
7秒前
领导范儿应助愤怒的源智采纳,获得10
7秒前
李来仪发布了新的文献求助10
7秒前
wisteety发布了新的文献求助10
7秒前
刘老师完成签到 ,获得积分10
7秒前
7秒前
7秒前
shulei发布了新的文献求助10
8秒前
糟糕的冷雪完成签到,获得积分10
8秒前
大模型应助杰森斯坦虎采纳,获得10
8秒前
典雅的如南完成签到 ,获得积分10
9秒前
小马甲应助无限的隶采纳,获得10
9秒前
饱满板栗完成签到 ,获得积分10
9秒前
Can完成签到,获得积分10
9秒前
9秒前
参上发布了新的文献求助10
10秒前
叫滚滚发布了新的文献求助10
10秒前
xiaowu发布了新的文献求助10
10秒前
Yara.H完成签到 ,获得积分10
10秒前
马佳凯发布了新的文献求助10
10秒前
11秒前
自由的明雪完成签到,获得积分10
11秒前
拼死拼活完成签到 ,获得积分10
12秒前
留胡子的煎饼完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762