Data fusion of FT-NIR and ATR-FTIR spectra for accurate authentication of geographical indications for Gastrodia elata Blume

天麻 模式识别(心理学) 指纹(计算) 人工智能 数学 残余物 线性判别分析 预处理器 计算机科学 生物系统 化学 分析化学(期刊) 生物 色谱法 算法 医学 替代医学 病理 中医药
作者
Chuanmao Zheng,Jieqing Li,Honggao Liu,Yuanzhong Wang
出处
期刊:Food bioscience [Elsevier]
卷期号:56: 103308-103308 被引量:29
标识
DOI:10.1016/j.fbio.2023.103308
摘要

Gastrodia elata Blume (G. elata Bl.), with its excellent nutritional and medicinal value from Zhaotong, has been protected by geographical indication (GI). Accurate certification of its origin is a prerequisite to safeguard consumer interests and maintain the market. Four different regions and three varieties of G. elata Bl. from Zhaotong were used in this study (n = 262). Tri-step infrared spectroscopy was used for ATR-FTIR spectral analysis to filter out fingerprint regions for data fusion with FT-NIR spectra, after which conventional discriminant models (PLS-DA and GS-SVM) were built. The second derivative (SD), multiple scattering correction (MSC), and Savitzky-Golay (SG) preprocessing were also performed on the spectra, and it was found that the preprocessing improved the performance of the PLS-DA model. The optimal model results in GS-SVM, based on mid-level data fusion of principal components (PCs) and latent variables (LVs), with sensitivity, specificity, accuracy, and Matthews correlation coefficient (MCC) of 1 for the test set. Furthermore, the residual convolutional neural network (ResNet) models were built, based on FT-NIR full spectra, band 3600−2700 cm−1 (MFA) and band 1750−500 cm−1 (MFB). Their accuracy in both train and test sets exceeds 97%, and the loss function curve is close to 0, which indicates that these three bands can be used as a fingerprint area to verify the GI of Zhaotong G. elata Bl. This study provides a fast, non-invasive method for the authentication of food or medicinal plant GI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
百杜完成签到,获得积分20
刚刚
NexusExplorer应助Moter采纳,获得10
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
华仔应助Katyusha采纳,获得10
2秒前
2秒前
麻花完成签到,获得积分10
2秒前
2秒前
千凡发布了新的文献求助10
3秒前
年年sci发布了新的文献求助10
3秒前
慕青应助NXK采纳,获得10
3秒前
传奇3应助从容芸采纳,获得20
4秒前
Oops发布了新的文献求助10
4秒前
刘玄德发布了新的文献求助10
4秒前
机智的凡梦完成签到,获得积分10
4秒前
LRR发布了新的文献求助10
4秒前
5秒前
Lin完成签到,获得积分10
5秒前
星星炒蛋完成签到,获得积分10
5秒前
张铭哲发布了新的文献求助10
5秒前
顾矜应助qqz采纳,获得10
6秒前
MY999完成签到,获得积分10
6秒前
嘟嘟嘟嘟嘟完成签到,获得积分10
6秒前
6秒前
竹子发布了新的文献求助20
7秒前
7秒前
7秒前
共享精神应助hopeseason采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
liuchuck驳回了Ava应助
7秒前
嘿ha发布了新的文献求助10
8秒前
Tea233发布了新的文献求助10
8秒前
共享精神应助天气晴朗采纳,获得10
8秒前
9秒前
9秒前
无极微光应助哇哈哈哈采纳,获得20
10秒前
火山啊啊啊完成签到 ,获得积分10
10秒前
慕青应助刘国建郭菱香采纳,获得10
10秒前
tangyong发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668030
求助须知:如何正确求助?哪些是违规求助? 4889242
关于积分的说明 15123064
捐赠科研通 4826923
什么是DOI,文献DOI怎么找? 2584432
邀请新用户注册赠送积分活动 1538259
关于科研通互助平台的介绍 1496590