清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Linear Transformer-GAN: A Novel Architecture to Symbolic Music Generation

鉴别器 计算机科学 变压器 生成语法 语音识别 人工智能 电压 电信 量子力学 探测器 物理
作者
Donglan Tian,Jinyan Chen,Xiangpeng Gao,Gang Pan
出处
期刊:Lecture Notes in Computer Science 卷期号:: 451-463
标识
DOI:10.1007/978-3-031-44195-0_37
摘要

Long-structured music generation that can be compared to human compositions remains an unresolved area of research. Since their introduction, the Transformer model and its variations, which rely on self-attention, have gained popularity in generating long-structured music. However, these models employ the teacher-forcing approach during training, which causes an exposure bias problem. Consequently, the generative model is incapable of producing music that consistently adheres to music theory. To address this issue, we propose a new Linear Transformer-GAN structure that generates high-quality music using a discriminator that has been trained to detect exposure bias. The Linear Transformer, a new and efficient variation of transformers, is creatively integrated with a generative adversarial network (GAN) to form our proposed model. In order to overcome the limitations of discrete domain data in GAN, we use the Policy Gradient and present a new discriminator structure that evaluates the current sequence reward based on several dimensions of music information. We use both the cross-entropy loss of different information dimensions and a music-theoretic mechanism to train the discriminator. Our experiments demonstrate that the proposed model generates music more consistent with music theory and is perceived as more pleasurable by listeners. This conclusion is supported by objective metrics and human evaluation. Overall, our approach offers a promising solution to the exposure bias problem in long-structured music generation and provides a more effective means of generating music that adheres to established music theory principles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sudeep完成签到,获得积分10
21秒前
qianlu完成签到 ,获得积分10
25秒前
daguan完成签到,获得积分10
32秒前
科研通AI6应助jing采纳,获得10
37秒前
加贝完成签到 ,获得积分10
43秒前
耳东完成签到 ,获得积分10
1分钟前
科研通AI6应助吱吱采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
威武的翠安完成签到 ,获得积分10
2分钟前
小马甲应助阿米尔盼盼采纳,获得10
2分钟前
zxx完成签到 ,获得积分0
2分钟前
gwbk完成签到,获得积分10
2分钟前
HCCha完成签到,获得积分10
3分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
甘川完成签到 ,获得积分10
4分钟前
qq完成签到 ,获得积分10
5分钟前
su完成签到 ,获得积分10
5分钟前
严冰蝶完成签到 ,获得积分10
5分钟前
Jiang 小白发布了新的文献求助10
5分钟前
5分钟前
丘比特应助科研通管家采纳,获得10
5分钟前
英俊的铭应助科研通管家采纳,获得10
5分钟前
嗯嗯发布了新的文献求助10
6分钟前
嗯嗯完成签到,获得积分10
6分钟前
枪王阿绣完成签到 ,获得积分10
6分钟前
CipherSage应助FXe采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
Bonnienuit完成签到 ,获得积分10
7分钟前
搜集达人应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
田田完成签到 ,获得积分10
8分钟前
吱吱发布了新的文献求助10
8分钟前
吱吱完成签到,获得积分10
8分钟前
高高从霜完成签到 ,获得积分10
9分钟前
领导范儿应助科研通管家采纳,获得10
9分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584787
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771569
捐赠科研通 4614474
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531