Linear Transformer-GAN: A Novel Architecture to Symbolic Music Generation

鉴别器 计算机科学 变压器 生成语法 语音识别 人工智能 电压 电信 物理 量子力学 探测器
作者
Donglan Tian,Jinyan Chen,Xiangpeng Gao,Gang Pan
出处
期刊:Lecture Notes in Computer Science 卷期号:: 451-463
标识
DOI:10.1007/978-3-031-44195-0_37
摘要

Long-structured music generation that can be compared to human compositions remains an unresolved area of research. Since their introduction, the Transformer model and its variations, which rely on self-attention, have gained popularity in generating long-structured music. However, these models employ the teacher-forcing approach during training, which causes an exposure bias problem. Consequently, the generative model is incapable of producing music that consistently adheres to music theory. To address this issue, we propose a new Linear Transformer-GAN structure that generates high-quality music using a discriminator that has been trained to detect exposure bias. The Linear Transformer, a new and efficient variation of transformers, is creatively integrated with a generative adversarial network (GAN) to form our proposed model. In order to overcome the limitations of discrete domain data in GAN, we use the Policy Gradient and present a new discriminator structure that evaluates the current sequence reward based on several dimensions of music information. We use both the cross-entropy loss of different information dimensions and a music-theoretic mechanism to train the discriminator. Our experiments demonstrate that the proposed model generates music more consistent with music theory and is perceived as more pleasurable by listeners. This conclusion is supported by objective metrics and human evaluation. Overall, our approach offers a promising solution to the exposure bias problem in long-structured music generation and provides a more effective means of generating music that adheres to established music theory principles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智的阿振完成签到,获得积分10
刚刚
KatzeBaliey完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
yar应助大饼采纳,获得10
3秒前
mammer应助一朵云采纳,获得20
3秒前
3秒前
Jason完成签到,获得积分10
4秒前
害羞凤灵完成签到,获得积分10
4秒前
芳芳完成签到,获得积分10
5秒前
风起枫落完成签到 ,获得积分10
5秒前
xkhxh完成签到 ,获得积分10
6秒前
zzq778发布了新的文献求助10
6秒前
小马甲应助双儿采纳,获得10
7秒前
江南烟雨如笙完成签到 ,获得积分10
8秒前
王洋应助枕星采纳,获得10
11秒前
笨笨寒天完成签到,获得积分10
11秒前
Hello应助zzq778采纳,获得10
11秒前
12秒前
铜豌豆完成签到 ,获得积分10
12秒前
稞小弟完成签到,获得积分10
12秒前
13秒前
15秒前
15秒前
zzzz发布了新的文献求助10
16秒前
小马完成签到,获得积分10
18秒前
18秒前
一朵云完成签到,获得积分10
19秒前
JSY发布了新的文献求助30
20秒前
浩铭完成签到,获得积分10
21秒前
Iven发布了新的文献求助10
21秒前
23秒前
25秒前
冷酷的天晴完成签到,获得积分10
25秒前
ysy完成签到,获得积分10
26秒前
26秒前
yum完成签到,获得积分20
27秒前
Ava应助专注的白柏采纳,获得10
27秒前
何如当初莫相识完成签到,获得积分10
27秒前
28秒前
落后从阳发布了新的文献求助10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029