清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Linear Transformer-GAN: A Novel Architecture to Symbolic Music Generation

鉴别器 计算机科学 变压器 生成语法 语音识别 人工智能 电压 电信 量子力学 探测器 物理
作者
Donglan Tian,Jinyan Chen,Xiangpeng Gao,Gang Pan
出处
期刊:Lecture Notes in Computer Science 卷期号:: 451-463
标识
DOI:10.1007/978-3-031-44195-0_37
摘要

Long-structured music generation that can be compared to human compositions remains an unresolved area of research. Since their introduction, the Transformer model and its variations, which rely on self-attention, have gained popularity in generating long-structured music. However, these models employ the teacher-forcing approach during training, which causes an exposure bias problem. Consequently, the generative model is incapable of producing music that consistently adheres to music theory. To address this issue, we propose a new Linear Transformer-GAN structure that generates high-quality music using a discriminator that has been trained to detect exposure bias. The Linear Transformer, a new and efficient variation of transformers, is creatively integrated with a generative adversarial network (GAN) to form our proposed model. In order to overcome the limitations of discrete domain data in GAN, we use the Policy Gradient and present a new discriminator structure that evaluates the current sequence reward based on several dimensions of music information. We use both the cross-entropy loss of different information dimensions and a music-theoretic mechanism to train the discriminator. Our experiments demonstrate that the proposed model generates music more consistent with music theory and is perceived as more pleasurable by listeners. This conclusion is supported by objective metrics and human evaluation. Overall, our approach offers a promising solution to the exposure bias problem in long-structured music generation and provides a more effective means of generating music that adheres to established music theory principles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shicheng完成签到,获得积分10
6秒前
安青兰完成签到 ,获得积分10
47秒前
1分钟前
完美世界应助Omni采纳,获得10
1分钟前
彭于晏应助璀璨的饺子采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI2S应助坚定的蓝天采纳,获得30
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
小蘑菇应助科研通管家采纳,获得10
3分钟前
Alisha完成签到,获得积分10
3分钟前
3分钟前
Omni发布了新的文献求助10
3分钟前
4分钟前
彭于晏应助科研通管家采纳,获得30
5分钟前
坚强的广山完成签到,获得积分0
5分钟前
贪玩的半仙完成签到,获得积分10
5分钟前
研友_VZG7GZ应助Shuo Yang采纳,获得10
5分钟前
路痴完成签到,获得积分10
6分钟前
老石完成签到 ,获得积分10
6分钟前
鉴定为学计算学的完成签到,获得积分10
6分钟前
7分钟前
传奇3应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
Sparrow0011发布了新的文献求助10
7分钟前
Ni发布了新的文献求助10
7分钟前
Ying发布了新的文献求助10
7分钟前
通科研完成签到 ,获得积分10
7分钟前
Shuo Yang发布了新的文献求助10
7分钟前
乐乐应助璀璨的饺子采纳,获得10
7分钟前
酷波er应助萤火虫啦啦采纳,获得10
8分钟前
8分钟前
8分钟前
顺顺发布了新的文献求助10
8分钟前
8分钟前
深情安青应助顺顺采纳,获得30
8分钟前
矢思然完成签到,获得积分10
8分钟前
挚友完成签到 ,获得积分20
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422896
求助须知:如何正确求助?哪些是违规求助? 3023268
关于积分的说明 8903959
捐赠科研通 2710724
什么是DOI,文献DOI怎么找? 1486669
科研通“疑难数据库(出版商)”最低求助积分说明 687127
邀请新用户注册赠送积分活动 682341