Linear Transformer-GAN: A Novel Architecture to Symbolic Music Generation

鉴别器 计算机科学 变压器 生成语法 语音识别 人工智能 电压 电信 量子力学 探测器 物理
作者
Donglan Tian,Jinyan Chen,Xiangpeng Gao,Gang Pan
出处
期刊:Lecture Notes in Computer Science 卷期号:: 451-463
标识
DOI:10.1007/978-3-031-44195-0_37
摘要

Long-structured music generation that can be compared to human compositions remains an unresolved area of research. Since their introduction, the Transformer model and its variations, which rely on self-attention, have gained popularity in generating long-structured music. However, these models employ the teacher-forcing approach during training, which causes an exposure bias problem. Consequently, the generative model is incapable of producing music that consistently adheres to music theory. To address this issue, we propose a new Linear Transformer-GAN structure that generates high-quality music using a discriminator that has been trained to detect exposure bias. The Linear Transformer, a new and efficient variation of transformers, is creatively integrated with a generative adversarial network (GAN) to form our proposed model. In order to overcome the limitations of discrete domain data in GAN, we use the Policy Gradient and present a new discriminator structure that evaluates the current sequence reward based on several dimensions of music information. We use both the cross-entropy loss of different information dimensions and a music-theoretic mechanism to train the discriminator. Our experiments demonstrate that the proposed model generates music more consistent with music theory and is perceived as more pleasurable by listeners. This conclusion is supported by objective metrics and human evaluation. Overall, our approach offers a promising solution to the exposure bias problem in long-structured music generation and provides a more effective means of generating music that adheres to established music theory principles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钮祜禄如懿完成签到,获得积分10
刚刚
Rollei应助null采纳,获得10
刚刚
xucc发布了新的文献求助10
刚刚
orixero应助1234采纳,获得10
刚刚
刚刚
内向初瑶发布了新的文献求助10
刚刚
是关心完成签到,获得积分10
1秒前
zero发布了新的文献求助10
1秒前
2秒前
胜利完成签到,获得积分10
2秒前
晨是发布了新的文献求助10
2秒前
下雨了发布了新的文献求助10
2秒前
王三石完成签到,获得积分10
3秒前
WTH完成签到,获得积分10
3秒前
3秒前
dqbhxwx发布了新的文献求助20
3秒前
睡个好觉发布了新的文献求助10
4秒前
赘婿应助直率小霜采纳,获得10
5秒前
英姑应助叶子麻采纳,获得10
5秒前
可靠F发布了新的文献求助10
5秒前
核潜艇很优秀应助wei998采纳,获得50
5秒前
grewj6完成签到,获得积分10
5秒前
今后应助整齐碧玉采纳,获得10
6秒前
7秒前
8秒前
慈祥的不愁完成签到 ,获得积分10
9秒前
MrX发布了新的文献求助10
9秒前
9秒前
内向初瑶完成签到,获得积分10
9秒前
刘刘完成签到,获得积分10
9秒前
10秒前
gm完成签到,获得积分10
11秒前
下雨了完成签到,获得积分10
11秒前
11秒前
fxs完成签到,获得积分10
11秒前
汉堡包应助HYT采纳,获得10
11秒前
12秒前
凌爽完成签到 ,获得积分10
12秒前
咕噜噜发布了新的文献求助10
12秒前
gaochuwuyu01完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719543
求助须知:如何正确求助?哪些是违规求助? 5256663
关于积分的说明 15288927
捐赠科研通 4869380
什么是DOI,文献DOI怎么找? 2614754
邀请新用户注册赠送积分活动 1564750
关于科研通互助平台的介绍 1521972