Hyperspectral image denoising by low-rank models with hyper-Laplacian total variation prior

高光谱成像 数学 拉普拉斯算子 拉普拉斯矩阵 规范(哲学) 降噪 算法 秩(图论) 拉格朗日乘数 矩阵范数 模式识别(心理学) 应用数学 人工智能 数学优化 计算机科学 组合数学 数学分析 特征向量 法学 物理 量子力学 政治学
作者
Shuang Xu,Jiangshe Zhang,Chunxia Zhang
出处
期刊:Signal Processing [Elsevier]
卷期号:201: 108733-108733 被引量:3
标识
DOI:10.1016/j.sigpro.2022.108733
摘要

The total variation (TV) regularized low-rank models have emerged as a powerful tool for hyperspectral image (HSI) denoising. TV, defined by the ℓ1-norm of gradients, is assumed that gradients obey the Laplacian distribution from the statistics point of view. By investigating the histogram of HSI’s gradients, we find that gradients in real HSIs are actually distributed as the hyper-Laplacian distribution with the power parameter q=1/2. Taking this prior into account, a hyper-Laplacian spectral-spatial total variation (HTV), defined by the ℓ1/2-norm of gradients, is proposed for HSI denoising. Furthermore, by incorporating HTV as the regularizer, a low-rank matrix model and a low-rank tensor model are proposed. The two models can be solved by the augmented Lagrange multiplier algorithm. To validate the effectiveness of HTV, we formulate baseline models by replacing HTV with ℓ1-norm and ℓ0-norm based TV regularizations, and it is revealed that our proposed HTV outperforms them. Furthermore, compared with several popular HSI denoising algorithms, the experiments conducted on both the simulated and real data demonstrate the superiority of proposed models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
达da完成签到,获得积分10
1秒前
1秒前
1秒前
丘比特应助Crazy_Runner采纳,获得10
2秒前
天天快乐应助小西采纳,获得10
2秒前
2秒前
Bennyz完成签到,获得积分10
2秒前
橘子完成签到,获得积分10
3秒前
HANG发布了新的文献求助10
3秒前
4秒前
L3完成签到,获得积分10
4秒前
瑾瑾瑾完成签到,获得积分10
4秒前
小雅完成签到 ,获得积分10
4秒前
jiang伟发布了新的文献求助10
4秒前
4秒前
kiminonawa发布了新的文献求助10
4秒前
外向钢铁侠完成签到,获得积分10
4秒前
小p发布了新的文献求助10
5秒前
慕青应助苏州小北采纳,获得10
5秒前
高兴的豆芽完成签到 ,获得积分10
5秒前
布知道完成签到 ,获得积分10
6秒前
Raye发布了新的文献求助10
6秒前
米奇完成签到,获得积分10
7秒前
小安发布了新的文献求助10
7秒前
KyrIrv发布了新的文献求助10
7秒前
8秒前
加速度完成签到 ,获得积分20
8秒前
8秒前
牧水之完成签到,获得积分10
9秒前
一片叶子完成签到,获得积分10
9秒前
9秒前
Markming发布了新的文献求助10
9秒前
9秒前
若语发布了新的文献求助10
9秒前
Ava完成签到,获得积分10
10秒前
秋冬完成签到 ,获得积分10
10秒前
11秒前
JamesPei应助淡淡绮琴采纳,获得30
11秒前
11秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167605
求助须知:如何正确求助?哪些是违规求助? 2819067
关于积分的说明 7924710
捐赠科研通 2478949
什么是DOI,文献DOI怎么找? 1320553
科研通“疑难数据库(出版商)”最低求助积分说明 632821
版权声明 602443