Research on online shopping contextual cues: refining classification from text mining

感觉线索 感知 线索依赖遗忘 背景(考古学) 语境学习 联想(心理学) 认知心理学 计算机科学 心理学 教育学 生物 古生物学 神经科学 心理治疗师
作者
Lin Wang,Huaxia Gao,Yang Zhao
出处
期刊:Asia Pacific Journal of Marketing and Logistics [Emerald (MCB UP)]
卷期号:35 (11): 2704-2726 被引量:3
标识
DOI:10.1108/apjml-10-2022-0847
摘要

Purpose Contextual cues have become a hot research topic in the field of mobile consumer behavior, owing to the continuous rise of digital marketing. However, the complex online shopping scene makes it challenging to directly identify the association between the characteristics of contextual cues and consumer behavior. Presently, few studies have only systematically extracted and refined the types and characteristics of contextual cues. The purpose of this study is to explore the types and mechanisms of contextual cues in online shopping scenarios. Design/methodology/approach This study uses the word2vec algorithm, grounded theory and co-occurrence cluster method, along with online shopping word-of-mouth (WOM) text and consumer behavior theory, in order to explore different types of contextual cues and its efficiency from 5,619 comment corpus. Findings This study puts forward the following conclusions. (1) From the perspective of online shopping, contextual cues comprise aesthetic perception cues, value perception cues, trust-dependent cues, time perception cues, memory attention cues, spatial perception cues, attribute cues and relationship cues. (2) Based on the online shopping scenarios, contextual cues and their interaction effects exert an effect on consumer satisfaction, recommendation, purchase and return behavior. Originality/value The study conclusions are helpful to further reveal the deep association between contextual cues and consumer behavior in the process of online shopping, thus providing practical and theoretical enlightenment for enterprises to not only effectively reshape the scene but also promote the consumers' active purchase behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lisn发布了新的文献求助10
1秒前
顾矜应助xumengyu采纳,获得10
1秒前
CN柏原崇完成签到,获得积分10
1秒前
Yvonne发布了新的文献求助10
1秒前
酷波er应助林登万采纳,获得10
1秒前
FashionBoy应助林登万采纳,获得10
1秒前
科研小白应助林登万采纳,获得10
1秒前
科研小白应助林登万采纳,获得10
1秒前
英姑应助林登万采纳,获得10
1秒前
ddd发布了新的文献求助10
2秒前
2秒前
pluto应助hotzera采纳,获得10
2秒前
北斗星的爱完成签到,获得积分10
2秒前
爱吃泡芙发布了新的文献求助10
3秒前
3秒前
4秒前
天之道完成签到,获得积分20
4秒前
安白枫完成签到,获得积分10
5秒前
bluekids发布了新的文献求助50
5秒前
跳跃的邪欢完成签到,获得积分10
6秒前
6秒前
呼哧呼哧大佬完成签到,获得积分10
6秒前
Ava应助zzk采纳,获得10
6秒前
高大一一完成签到,获得积分10
7秒前
嘉心糖应助刻苦的安白采纳,获得20
8秒前
研友_LOK59L发布了新的文献求助10
8秒前
8秒前
moonlight完成签到,获得积分10
9秒前
茜茜发布了新的文献求助10
9秒前
盖斯的可言完成签到,获得积分10
9秒前
11秒前
11秒前
12秒前
13秒前
15秒前
漠池完成签到,获得积分10
15秒前
Medneuron发布了新的文献求助10
16秒前
爆米花应助茜茜采纳,获得10
16秒前
Bazinga完成签到,获得积分20
16秒前
CipherSage应助粥粥卷采纳,获得10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305612
求助须知:如何正确求助?哪些是违规求助? 2939343
关于积分的说明 8493224
捐赠科研通 2613787
什么是DOI,文献DOI怎么找? 1427585
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647916