A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures

荷电状态 电池组 卡尔曼滤波器 均方误差 稳健性(进化) 近似误差 计算机科学 控制理论(社会学) 化学 算法 物理 数学 电池(电) 统计 人工智能 量子力学 基因 生物化学 功率(物理) 控制(管理)
作者
Paul Takyi‐Aninakwa,Shunli Wang,Hongying Zhang,Yang Xiao,Carlos Fernandez
出处
期刊:Energy [Elsevier BV]
卷期号:273: 127231-127231 被引量:16
标识
DOI:10.1016/j.energy.2023.127231
摘要

Accurately estimating the state of charge (SOC) of lithium-ion batteries by the battery management system (BMS) is crucial for safe electric vehicle (EV) operations. This paper proposes a SOC estimation method for lithium-ion batteries based on a deep feed-forward neural network (DFFNN) optimized with a relevant attention mechanism and stochastic weight (RAS) algorithms. The relevant attention mechanism extracts useful features from the input data. Then, the stochastic weight algorithm randomly updates the weights and biases, rather than keeping them constant, for the DFFNN to estimate the SOC using full-scale input data and solve the gradient problem. To estimate the SOC by adaptively correcting each state's probability and error covariance quantities while maintaining robustness against spontaneous error noise and spikes, a shifting-step unscented Kalman filter (SUKF) based on a Bayesian transformation is proposed. With its transfer learning mechanism, the RAS optimization solves the gradient problems and enhances the DFFNN's generalizability to various working conditions, providing more accurate estimates at a lower training cost. Furthermore, based on the findings and comparisons, the results of the proposed RAS-DFFNN-SUKF model show that it has the overall best mean absolute error, root mean square error, and mean absolute percentage error values of 0.03854%, 0.05238%, and 0.18853%, respectively, which shows that it is reliable and adaptable enough for practical BMS applications in EVs by ensuring fast and accurate SOC estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助qdd采纳,获得10
1秒前
善学以致用应助qx采纳,获得10
1秒前
星辰大海应助一二采纳,获得10
1秒前
Eeeee发布了新的文献求助30
1秒前
Jiuuu发布了新的文献求助10
2秒前
思源应助林屿采纳,获得10
3秒前
4秒前
桐桐应助Gideon采纳,获得10
4秒前
美好斓发布了新的文献求助10
4秒前
4秒前
SYLH应助奥利奥采纳,获得20
6秒前
智慧者发布了新的文献求助10
6秒前
Zac完成签到,获得积分10
6秒前
7秒前
情怀应助害怕的慕晴采纳,获得10
7秒前
斯文败类应助风清扬采纳,获得10
7秒前
YANYAN完成签到,获得积分10
7秒前
ba发布了新的文献求助10
8秒前
偷喝汽水发布了新的文献求助10
9秒前
激昂的如柏完成签到,获得积分10
10秒前
Fangyu完成签到,获得积分10
10秒前
曾纪诚完成签到,获得积分10
12秒前
ZHN发布了新的文献求助10
12秒前
orixero应助细心的山槐采纳,获得10
12秒前
zz发布了新的文献求助10
14秒前
酷炫板凳完成签到,获得积分10
14秒前
15秒前
靓丽傲玉发布了新的文献求助10
15秒前
XY完成签到,获得积分20
16秒前
高大冬寒关注了科研通微信公众号
17秒前
ZHN完成签到,获得积分10
18秒前
yookia应助斑马还没睡采纳,获得10
19秒前
ladder发布了新的文献求助10
19秒前
20秒前
Hello应助易安采纳,获得10
22秒前
xcx发布了新的文献求助10
22秒前
可爱的函函应助林一采纳,获得10
23秒前
24秒前
皮皮完成签到 ,获得积分10
24秒前
哇哈哈完成签到,获得积分10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952910
求助须知:如何正确求助?哪些是违规求助? 3498351
关于积分的说明 11091687
捐赠科研通 3229027
什么是DOI,文献DOI怎么找? 1785170
邀请新用户注册赠送积分活动 869214
科研通“疑难数据库(出版商)”最低求助积分说明 801377