纳米技术
化学
纳米颗粒
纳米材料
等离子体子
等离子纳米粒子
材料科学
光电子学
作者
Meiyun Ye,Lei Song,Yichen Ye,Zhaoxiang Deng
摘要
Solution-based nanoparticle assembly represents a highly promising way to build functional metastructures based on a wealth of synthetic nanomaterial building blocks with well-controlled morphology and crystallinity. In particular, the involvement of DNA molecular programming in these bottom-up processes gradually helps the ambitious goal of customizable chemical nanofabrication. However, a fundamental challenge is to realize strong interunit coupling in an assembly toward emerging functions and applications. Herein, we present a unified and clean strategy to address this critical issue based on a H2O2-redox-driven "assembly and healing" process. This facile solution route is able to realize both capacitively coupled and conductively bridged colloidal boundaries, simply switchable by the reaction temperature, toward bottom-up nanoplasmonic engineering. In particular, such a "green" process does not cause surface contamination of nanoparticles by exogenous active metal ions or strongly passivating ligands, which, if it occurs, could obscure the intrinsic properties of as-formed structures. Accordingly, previously raised questions regarding the activities of strongly coupled plasmonic structures are clarified. The reported process is adaptable to DNA nanotechnology, offering molecular programmability of interparticle charge conductance. This work represents a new generation of methods to make strongly coupled nanoassemblies, offering great opportunities for functional colloidal technology and even metal self-healing.
科研通智能强力驱动
Strongly Powered by AbleSci AI