计算机科学
分割
公制(单位)
编码(集合论)
课程
人工智能
人工神经网络
胰腺
机制(生物学)
机器学习
模式识别(心理学)
程序设计语言
工程类
化学
物理
心理学
教育学
生物化学
运营管理
集合(抽象数据类型)
量子力学
作者
Yanjun Tang,Kun Zhan,Zhibo Tian,Mingxuan Zhang,Saisai Wang,Xianfei Wen
标识
DOI:10.1109/icip49359.2023.10222027
摘要
Pancreas segmentation is challenging due to the small proportion and highly changeable anatomical structure. It motivates us to propose a novel segmentation framework, namely Curriculum Knowledge Switching (CKS) framework, which decomposes detecting pancreas into three phases with different difficulty extent: straightforward, difficult, and challenging. The framework switches from straightforward to challenging phases and thereby gradually learns to detect pancreas. In addition, we adopt the momentum update parameter updating mechanism during switching, ensuring the loss converges gradually when the input dataset changes. Experimental results show that different neural network backbones with the CKS framework achieved state-of-the-art performance on the NIH dataset as measured by the DSC metric. The code is available at https://github.com/kunzhan/CKS_Pancreas
科研通智能强力驱动
Strongly Powered by AbleSci AI