Robot assisted bone milling state classification network with attention mechanism

计算机科学 机制(生物学) 机器人 人工智能 模式识别(心理学) 机器学习 认识论 哲学
作者
Jia Duo,Yuanzhu Zhan,Jianxun Zhang,Yu Dai
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123726-123726 被引量:2
标识
DOI:10.1016/j.eswa.2024.123726
摘要

In the process of medical robot assisted bone milling surgery, the accuracy of recognition of milling state is crucial for surgical safety. However, previous studies have rarely used neural networks for signal analysis and processing, and not included attention mechanisms in neural networks to distinguish the weights of different signal features. In this paper a tactile-auditory attention model for milling state recognition is proposed. The model combines attention mechanism with fully connected neural networks. First, the milling state is divided into four types: idling, cortical bone, cancellous bone, and muscle. The acceleration and sound pressure information are extracted in 13 dimensions each, including 3-dimensional time-domain features and 10-dimensional frequency-domain features. Second, a milling state classification network with attention mechanism was established, including pre-connected attention mechanism (Pre-AT) and embedded attention mechanism (Emb-AT). The experimental results showed greater performance than other traditional methods, with test set accuracy of 94.57% and 95.29%, respectively. Afterwards, the impact of single signal and fused signal on recognition results was explored. From the experimental results, fused tactile-auditory signals had higher accuracy than single signal recognition. The accuracy rates of the test set using fused signals and acceleration and sound pressure signals were 95.29%, 92.09% and 90.07%. In addition, attention vectors are visualized to identify the degree of emphasis on different signals during the recognition process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
低空飞行发布了新的文献求助20
2秒前
芙芙官完成签到,获得积分10
2秒前
mbl891101完成签到,获得积分10
3秒前
3秒前
CX330发布了新的文献求助10
3秒前
黑咖啡完成签到,获得积分10
5秒前
callmefather发布了新的文献求助10
7秒前
英俊的铭应助西蓝花采纳,获得10
8秒前
丘比特应助Haho采纳,获得10
8秒前
9秒前
9秒前
10秒前
ding应助Skye采纳,获得10
11秒前
12秒前
胡萝卜发布了新的文献求助10
13秒前
小二郎应助shelly0621采纳,获得10
14秒前
热情飞荷发布了新的文献求助10
14秒前
ouyangshi发布了新的文献求助10
15秒前
16秒前
靓丽念薇发布了新的文献求助10
17秒前
脑洞疼应助NYM采纳,获得10
18秒前
杨觅发布了新的文献求助10
19秒前
善学以致用应助胡萝卜采纳,获得10
20秒前
20秒前
22秒前
Johnny完成签到,获得积分10
22秒前
zjx完成签到,获得积分10
22秒前
大模型应助热情飞荷采纳,获得10
23秒前
十的二十四次方完成签到,获得积分10
23秒前
24秒前
正直珩发布了新的文献求助10
26秒前
风语村发布了新的文献求助10
27秒前
27秒前
dr发布了新的文献求助10
28秒前
28秒前
29秒前
xybjt完成签到 ,获得积分10
29秒前
29秒前
PYY发布了新的文献求助10
29秒前
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Plant–Pollinator Interactions: From Specialization to Generalization 400
Cai Yuanpei y la educación en la República de China (1912-1949) 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589034
求助须知:如何正确求助?哪些是违规求助? 3157481
关于积分的说明 9515274
捐赠科研通 2860273
什么是DOI,文献DOI怎么找? 1571736
邀请新用户注册赠送积分活动 737373
科研通“疑难数据库(出版商)”最低求助积分说明 722277