Tumor conspicuity enhancement-based segmentation model for liver tumor segmentation and RECIST diameter measurement in non-contrast CT images

分割 医学 对比度增强 对比度(视觉) 放射科 计算机断层摄影术 核医学 人工智能 计算机视觉 图像分割 计算机科学 磁共振成像
作者
Haofeng Liu,Yanyan Zhou,Shuiping Gou,Zhonghua Luo
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108420-108420 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108420
摘要

Liver tumor segmentation (LiTS) accuracy on contrast-enhanced computed tomography (CECT) images is higher than that on non-contrast computed tomography (NCCT) images. However, CECT requires contrast medium and repeated scans to obtain multiphase enhanced CT images, which is time-consuming and cost-increasing. Therefore, despite the lower accuracy of LiTS on NCCT images, which still plays an irreplaceable role in some clinical settings, such as guided brachytherapy, ablation, or evaluation of patients with renal function damage. In this study, we intend to generate enhanced high-contrast pseudo-color CT (PCCT) images to improve the accuracy of LiTS and RECIST diameter measurement on NCCT images.To generate high-contrast CT liver tumor region images, an intensity-based tumor conspicuity enhancement (ITCE) model was first developed. In the ITCE model, a pseudo color conversion function from an intensity distribution of the tumor was established, and it was applied in NCCT to generate enhanced PCCT images. Additionally, we design a tumor conspicuity enhancement-based liver tumor segmentation (TCELiTS) model, which was applied to improve the segmentation of liver tumors on NCCT images. The TCELiTS model consists of three components: an image enhancement module based on the ITCE model, a segmentation module based on a deep convolutional neural network, and an attention loss module based on restricted activation. Segmentation performance was analyzed using the Dice similarity coefficient (DSC), sensitivity, specificity, and RECIST diameter error.To develop the deep learning model, 100 patients with histopathologically confirmed liver tumors (hepatocellular carcinoma, 64 patients; hepatic hemangioma, 36 patients) were randomly divided into a training set (75 patients) and an independent test set (25 patients). Compared with existing tumor automatic segmentation networks trained on CECT images (U-Net, nnU-Net, DeepLab-V3, Modified U-Net), the DSCs achieved on the enhanced PCCT images are both improved compared with those on NCCT images. We observe improvements of 0.696-0.713, 0.715 to 0.776, 0.748 to 0.788, and 0.733 to 0.799 in U-Net, nnU-Net, DeepLab-V3, and Modified U-Net, respectively, in terms of DSC values. In addition, an observer study including 5 doctors was conducted to compare the segmentation performance of enhanced PCCT images with that of NCCT images and showed that enhanced PCCT images are more advantageous for doctors to segment tumor regions. The results showed an accuracy improvement of approximately 3%-6%, but the time required to segment a single CT image was reduced by approximately 50 %.Experimental results show that the ITCE model can generate high-contrast enhanced PCCT images, especially in liver regions, and the TCELiTS model can improve LiTS accuracy in NCCT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高小萱完成签到 ,获得积分10
1秒前
一二完成签到,获得积分10
1秒前
1秒前
阳阳阳完成签到,获得积分10
2秒前
3秒前
4秒前
CH科研完成签到,获得积分10
5秒前
5秒前
lucy完成签到,获得积分10
6秒前
英姑应助zzt采纳,获得10
6秒前
6秒前
沉默幻天发布了新的文献求助10
7秒前
执着乐双完成签到,获得积分10
7秒前
9秒前
xiuqing董完成签到,获得积分10
9秒前
songf11发布了新的文献求助10
9秒前
10秒前
de完成签到,获得积分10
10秒前
温柔若颜完成签到,获得积分10
10秒前
qcck发布了新的文献求助10
10秒前
11秒前
琅琊稳重的团子完成签到,获得积分10
11秒前
iNk应助刻苦的安白采纳,获得20
11秒前
咳咳咳完成签到,获得积分10
11秒前
炫酷皮皮天完成签到,获得积分10
11秒前
12秒前
konkon完成签到,获得积分10
13秒前
tanmeng77发布了新的文献求助10
14秒前
14秒前
Han关注了科研通微信公众号
14秒前
东少完成签到,获得积分10
15秒前
金轩完成签到 ,获得积分10
15秒前
厄尔尼诺完成签到,获得积分10
16秒前
思源应助病猫不发威采纳,获得10
16秒前
杨洋发布了新的文献求助10
17秒前
可靠青荷完成签到,获得积分10
17秒前
Youtenter完成签到,获得积分10
18秒前
2323完成签到,获得积分10
18秒前
云中应助何1采纳,获得10
19秒前
Linda完成签到,获得积分10
19秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
More activities for teaching positive psychology: A guide for instructors 700
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3402368
求助须知:如何正确求助?哪些是违规求助? 3009200
关于积分的说明 8835541
捐赠科研通 2696146
什么是DOI,文献DOI怎么找? 1477736
科研通“疑难数据库(出版商)”最低求助积分说明 683235
邀请新用户注册赠送积分活动 676910