Maize leaf disease recognition based on TC-MRSN model in sustainable agriculture

农业 可持续农业 疾病 农业工程 农学 计算机科学 农林复合经营 环境科学 工程类 生物 医学 生态学 病理
作者
Hanming Wang,Xinyao Pan,Yanyan Zhu,Songquan Li,Rongbo Zhu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:221: 108915-108915 被引量:2
标识
DOI:10.1016/j.compag.2024.108915
摘要

Maize diseases caused by fungal pathogens are the primary factor resulting in reduced maize yield. However, in practical complex background scenarios, diseases caused by spores, such as gray leaf spot and rust, usually exhibit characteristics including diverse propagation routes, similar lesion appearances at the initial stage of infection, and varying lesion sizes, which raise a challenging task to recognize similar diseases. Focusing on the accurate recognition of maize leaf diseases in complex backgrounds, this paper proposes a texture-color dual-branch multiscale residual shrinkage network (TC-MRSN) model based on deep learning. To preserve the characteristic information of small-sized lesions during the sampling process, texture feature extraction block and texture-color dual-branch block are designed to extract texture features from lesions and fuse them with RGB features. To reduce the interference of redundant background noise in the fusion feature, the multi-scale residual shrinkage module is presented to extract different receptive field features and process redundant noise through soft threshold. The proposed model is also deployed on mobile phones to enable real-time data collection and analysis. Detailed experimental and practical testing results show that TC-MRSN can achieve an average accuracy rate of 94.88% and 99.59% on complex background dataset and PlantVillage dataset, respectively, which is higher than those of the existing models ResNet50, VGG-ICNN, HCA-MFFNet by 5.2%, 2.5% and 1.8%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助嘻嘻采纳,获得10
1秒前
Rita应助lululu采纳,获得10
1秒前
HHHH完成签到,获得积分20
2秒前
满意勒完成签到,获得积分10
2秒前
Huang完成签到 ,获得积分0
3秒前
4秒前
hata233完成签到,获得积分10
5秒前
哒哒哒发布了新的文献求助10
5秒前
6秒前
10秒前
有川洋一完成签到 ,获得积分10
10秒前
10秒前
赘婿应助梦璃采纳,获得10
11秒前
quanjiazhi发布了新的文献求助10
11秒前
面向杂志编论文应助孙67采纳,获得10
12秒前
英姑应助机灵石头采纳,获得10
13秒前
FashionBoy应助我要发文章采纳,获得10
13秒前
yolo发布了新的文献求助10
14秒前
喜欢写文章的小朱完成签到,获得积分10
14秒前
嘻嘻发布了新的文献求助10
15秒前
15秒前
研友_VZG7GZ应助墨痕采纳,获得10
18秒前
18秒前
19秒前
daihq3发布了新的文献求助20
19秒前
20秒前
Jasper应助victormanboy3采纳,获得10
20秒前
21秒前
Xin发布了新的文献求助10
22秒前
yhbk完成签到 ,获得积分10
22秒前
小红书求接接接接一篇完成签到,获得积分10
23秒前
23秒前
梦璃发布了新的文献求助10
24秒前
Na完成签到 ,获得积分10
25秒前
天天向上完成签到,获得积分10
25秒前
tao完成签到 ,获得积分10
25秒前
机灵石头发布了新的文献求助10
26秒前
研友_VZG7GZ应助cherry采纳,获得10
27秒前
俊秀的雪糕完成签到,获得积分10
27秒前
又村完成签到 ,获得积分10
28秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222475
求助须知:如何正确求助?哪些是违规求助? 2871125
关于积分的说明 8173855
捐赠科研通 2538042
什么是DOI,文献DOI怎么找? 1370245
科研通“疑难数据库(出版商)”最低求助积分说明 645736
邀请新用户注册赠送积分活动 619535