Ultra-repeatability measurement of calorific value of coal by NIRS-XRF

燃烧热 重复性 燃烧 锅炉(水暖) 偏最小二乘回归 工艺工程 煤炭能源价值 激光诱导击穿光谱 分析化学(期刊) 材料科学 环境科学 生物系统 制浆造纸工业 化学 数学 光谱学 煤燃烧产物 废物管理 统计 环境化学 色谱法 有机化学 工程类 物理 量子力学 生物
作者
Rui Gao,Jiaxuan Li,Shuqing Wang,Yan Zhang,Lei Zhang,Zefu Ye,zhujun zhu,Wangbao Yin,Suotang Jia
出处
期刊:Analytical Methods [The Royal Society of Chemistry]
卷期号:15 (13): 1674-1680 被引量:1
标识
DOI:10.1039/d2ay02086f
摘要

Calorific value is an important indicator to evaluate the comprehensive quality of coal, and its real-time and rapid analysis is of great significance for optimizing the coal blending process and improving boiler combustion efficiency. Traditional assays are time-consuming, and prompt gamma neutron activation analysis (PGNAA) and laser-induced breakdown spectroscopy (LIBS) have certain limitations. In this paper, a novel technique for ultra-repeatability measurement of coal calorific value by combining near-infrared spectroscopy (NIRS) and X-ray fluorescence (XRF) is proposed. In this NIRS-XRF technology, the former can stably measure organic components such as C-H and N-H that are positively correlated with the calorific value, while the latter can stably measure inorganic elements such as Na, Al, Si, Ca, Fe, and Mn that are negatively correlated with the calorific value. The combination of the two can greatly improve the measurement repeatability of coal calorific value. In the quantitative analysis algorithm, a holistic-segmented prediction model based on partial least squares (PLS) is proposed, that is, the holistic model is used to roughly predict the calorific value and determine the segment accordingly, and then the corresponding segmented model is used to accurately predict the calorific value. The experimental results show that the root mean square error of prediction (RMSEP), the average relative error (ARE), and the standard deviation (SD) of this method for predicting the calorific value of coal are 0.71 MJ kg-1, 1.18% and 0.07 MJ kg-1 respectively. The measurement repeatability meets the requirements of the Chinese national standard. This calorific value measurement technology based on NIRS-XRF is safe, fast, and stable, providing a new way to optimize and control the utilization process of coal in coal washing plants, power plants, coking, and other industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
汉堡包应助冷傲迎梦采纳,获得10
刚刚
1秒前
1秒前
puuuunido完成签到 ,获得积分10
1秒前
研友_VZG7GZ应助梦影采纳,获得10
2秒前
桐桐应助脱氧核唐小姐采纳,获得10
5秒前
6秒前
小小二发布了新的文献求助10
6秒前
科目三应助豆小豆采纳,获得30
6秒前
科研小狗完成签到,获得积分10
8秒前
8秒前
缥缈夏山完成签到,获得积分10
9秒前
10秒前
史蒂夫完成签到,获得积分10
10秒前
laox发布了新的文献求助20
12秒前
量子星尘发布了新的文献求助10
12秒前
14秒前
蛋烘糕发布了新的文献求助10
14秒前
执着的导师完成签到,获得积分10
14秒前
科研通AI6应助郑伟李采纳,获得30
15秒前
浮游应助称心的板栗采纳,获得10
16秒前
阔达宝莹发布了新的文献求助10
17秒前
17秒前
等于零完成签到 ,获得积分10
17秒前
hush完成签到,获得积分20
18秒前
18秒前
19秒前
李健的小迷弟应助wangting采纳,获得10
19秒前
wny发布了新的文献求助20
22秒前
Criminology34完成签到,获得积分0
22秒前
22秒前
yulong完成签到,获得积分10
23秒前
qu发布了新的文献求助10
25秒前
阔达宝莹完成签到,获得积分20
26秒前
笙笙完成签到,获得积分10
26秒前
窜天猴发布了新的文献求助10
27秒前
29秒前
背影完成签到 ,获得积分10
29秒前
李绍进完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495259
求助须知:如何正确求助?哪些是违规求助? 4592967
关于积分的说明 14439338
捐赠科研通 4525803
什么是DOI,文献DOI怎么找? 2479715
邀请新用户注册赠送积分活动 1464544
关于科研通互助平台的介绍 1437385