Ultra-repeatability measurement of calorific value of coal by NIRS-XRF

燃烧热 重复性 燃烧 锅炉(水暖) 偏最小二乘回归 工艺工程 煤炭能源价值 激光诱导击穿光谱 分析化学(期刊) 材料科学 环境科学 生物系统 制浆造纸工业 化学 数学 光谱学 煤燃烧产物 废物管理 统计 环境化学 色谱法 工程类 物理 有机化学 生物 量子力学
作者
Rui Gao,Jiaxuan Li,Shuqing Wang,Yan Zhang,Lei Zhang,Zefu Ye,zhujun zhu,Wangbao Yin,Suotang Jia
出处
期刊:Analytical Methods [The Royal Society of Chemistry]
卷期号:15 (13): 1674-1680 被引量:1
标识
DOI:10.1039/d2ay02086f
摘要

Calorific value is an important indicator to evaluate the comprehensive quality of coal, and its real-time and rapid analysis is of great significance for optimizing the coal blending process and improving boiler combustion efficiency. Traditional assays are time-consuming, and prompt gamma neutron activation analysis (PGNAA) and laser-induced breakdown spectroscopy (LIBS) have certain limitations. In this paper, a novel technique for ultra-repeatability measurement of coal calorific value by combining near-infrared spectroscopy (NIRS) and X-ray fluorescence (XRF) is proposed. In this NIRS-XRF technology, the former can stably measure organic components such as C-H and N-H that are positively correlated with the calorific value, while the latter can stably measure inorganic elements such as Na, Al, Si, Ca, Fe, and Mn that are negatively correlated with the calorific value. The combination of the two can greatly improve the measurement repeatability of coal calorific value. In the quantitative analysis algorithm, a holistic-segmented prediction model based on partial least squares (PLS) is proposed, that is, the holistic model is used to roughly predict the calorific value and determine the segment accordingly, and then the corresponding segmented model is used to accurately predict the calorific value. The experimental results show that the root mean square error of prediction (RMSEP), the average relative error (ARE), and the standard deviation (SD) of this method for predicting the calorific value of coal are 0.71 MJ kg-1, 1.18% and 0.07 MJ kg-1 respectively. The measurement repeatability meets the requirements of the Chinese national standard. This calorific value measurement technology based on NIRS-XRF is safe, fast, and stable, providing a new way to optimize and control the utilization process of coal in coal washing plants, power plants, coking, and other industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangshenlan完成签到 ,获得积分10
刚刚
xima发布了新的文献求助10
刚刚
syk应助彭佳丽采纳,获得10
3秒前
小羊完成签到,获得积分10
4秒前
7秒前
7秒前
俊逸的盛男完成签到 ,获得积分10
8秒前
li锂狸应助222520zys采纳,获得10
8秒前
9秒前
丘比特应助饱满的雨泽采纳,获得10
11秒前
李剑鸿发布了新的文献求助200
13秒前
消潇发布了新的文献求助30
14秒前
把握当下发布了新的文献求助10
14秒前
15秒前
神经蛙完成签到 ,获得积分10
15秒前
呆呆要努力完成签到 ,获得积分10
18秒前
彭剑封发布了新的文献求助10
18秒前
骆欣怡完成签到 ,获得积分10
20秒前
学习发布了新的文献求助10
24秒前
无花果应助limz采纳,获得10
32秒前
NexusExplorer应助limz采纳,获得10
32秒前
35秒前
Suyi完成签到,获得积分10
36秒前
pluto应助科研通管家采纳,获得10
41秒前
41秒前
叮叮当应助科研通管家采纳,获得20
41秒前
Lumos发布了新的文献求助10
41秒前
4399com应助科研通管家采纳,获得10
41秒前
41秒前
Tututiyt完成签到,获得积分10
43秒前
44秒前
44秒前
45秒前
limz完成签到,获得积分10
46秒前
所所应助电致阿光采纳,获得10
46秒前
keyanseng发布了新的文献求助10
48秒前
传奇3应助学术山芋采纳,获得30
49秒前
贺知书发布了新的文献求助10
49秒前
Monster发布了新的文献求助10
50秒前
消潇发布了新的文献求助30
52秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309724
求助须知:如何正确求助?哪些是违规求助? 2942954
关于积分的说明 8511920
捐赠科研通 2618053
什么是DOI,文献DOI怎么找? 1430781
科研通“疑难数据库(出版商)”最低求助积分说明 664310
邀请新用户注册赠送积分活动 649462