已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ultra-repeatability measurement of calorific value of coal by NIRS-XRF

燃烧热 重复性 燃烧 锅炉(水暖) 偏最小二乘回归 工艺工程 煤炭能源价值 激光诱导击穿光谱 分析化学(期刊) 材料科学 环境科学 生物系统 制浆造纸工业 化学 数学 光谱学 煤燃烧产物 废物管理 统计 环境化学 色谱法 工程类 物理 有机化学 生物 量子力学
作者
Rui Gao,Jiaxuan Li,Shuqing Wang,Yan Zhang,Lei Zhang,Zefu Ye,zhujun zhu,Wangbao Yin,Suotang Jia
出处
期刊:Analytical Methods [Royal Society of Chemistry]
卷期号:15 (13): 1674-1680 被引量:1
标识
DOI:10.1039/d2ay02086f
摘要

Calorific value is an important indicator to evaluate the comprehensive quality of coal, and its real-time and rapid analysis is of great significance for optimizing the coal blending process and improving boiler combustion efficiency. Traditional assays are time-consuming, and prompt gamma neutron activation analysis (PGNAA) and laser-induced breakdown spectroscopy (LIBS) have certain limitations. In this paper, a novel technique for ultra-repeatability measurement of coal calorific value by combining near-infrared spectroscopy (NIRS) and X-ray fluorescence (XRF) is proposed. In this NIRS-XRF technology, the former can stably measure organic components such as C-H and N-H that are positively correlated with the calorific value, while the latter can stably measure inorganic elements such as Na, Al, Si, Ca, Fe, and Mn that are negatively correlated with the calorific value. The combination of the two can greatly improve the measurement repeatability of coal calorific value. In the quantitative analysis algorithm, a holistic-segmented prediction model based on partial least squares (PLS) is proposed, that is, the holistic model is used to roughly predict the calorific value and determine the segment accordingly, and then the corresponding segmented model is used to accurately predict the calorific value. The experimental results show that the root mean square error of prediction (RMSEP), the average relative error (ARE), and the standard deviation (SD) of this method for predicting the calorific value of coal are 0.71 MJ kg-1, 1.18% and 0.07 MJ kg-1 respectively. The measurement repeatability meets the requirements of the Chinese national standard. This calorific value measurement technology based on NIRS-XRF is safe, fast, and stable, providing a new way to optimize and control the utilization process of coal in coal washing plants, power plants, coking, and other industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
左耳东完成签到,获得积分10
1秒前
饱满老鼠发布了新的文献求助10
1秒前
yffffff关注了科研通微信公众号
2秒前
Roc发布了新的文献求助10
2秒前
超帅丹亦发布了新的文献求助10
2秒前
2秒前
田様应助哪哪知道呀采纳,获得10
3秒前
JamesPei应助kazewwk采纳,获得10
4秒前
堪洪完成签到,获得积分10
4秒前
4秒前
小马甲应助yangjoy采纳,获得10
5秒前
Mystery完成签到,获得积分10
5秒前
龚修洁发布了新的文献求助10
6秒前
徐涵完成签到 ,获得积分10
6秒前
7秒前
zhouzhm5发布了新的文献求助10
7秒前
海德堡发布了新的文献求助10
7秒前
许垲锋发布了新的文献求助10
8秒前
丘比特应助Roc采纳,获得10
10秒前
慕青应助清秀的冰巧采纳,获得10
11秒前
11秒前
326361887发布了新的文献求助10
12秒前
请及时确认完成签到,获得积分10
14秒前
隐形盼海完成签到 ,获得积分10
15秒前
封某完成签到 ,获得积分20
15秒前
子辰完成签到,获得积分10
15秒前
酷波er应助xsq采纳,获得10
15秒前
yffffff发布了新的文献求助10
18秒前
Epiphany_wts发布了新的文献求助10
19秒前
科研通AI6应助蒋芳华采纳,获得30
20秒前
信仰完成签到,获得积分10
21秒前
soso完成签到,获得积分20
21秒前
tguczf完成签到,获得积分10
22秒前
326361887完成签到,获得积分10
22秒前
zhouzhm5完成签到,获得积分10
25秒前
哈哈哈哈完成签到 ,获得积分10
25秒前
li完成签到,获得积分10
25秒前
Bond发布了新的文献求助10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252704
求助须知:如何正确求助?哪些是违规求助? 4416333
关于积分的说明 13749452
捐赠科研通 4288358
什么是DOI,文献DOI怎么找? 2352895
邀请新用户注册赠送积分活动 1349738
关于科研通互助平台的介绍 1309271