An Attention Augmented Convolution-based Tiny-Residual UNet for Road Extraction

残余物 卷积(计算机科学) 计算机科学 萃取(化学) 人工智能 计算机视觉 算法 化学 色谱法 人工神经网络
作者
Parmeshwar S. Patil,Raghunath S. Holambe,L. M. Waghmare
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tai.2024.3357437
摘要

Recently remote sensing images have become more popular due to improved image quality and resolution. These images have been shown to be a valuable data source for road extraction applications like intelligent transportation systems, road maintenance, and road map making. In recent decades, the use of highly significant deep learning in automatic road extraction from these images has been a hot research area. However, highly accurate road extractions from remote sensing images remain a challenge because they are cluttered in the background and have widely different shapes and complex connectivities. This paper proposes novel tiny attention augmented convolution-based residual UNet architecture (Tiny-AAResUNet) for road extraction, which adopts powerful features of self-attention mechanism and advantageous properties of residual UNet structure. The self-attention mechanism uses attention augmented convolutional operation to capture long-range global information; however, traditional convolution has a fundamental disadvantage: it only performs on local information. Therefore, we use the attention augmented convolutional layer as an alternative to standard convolution layers to obtain more discriminant feature representations. It allows to develop a network with fewer parameters. We also adopt improved residual units in standard ResUNet to the speedup training process and enhance the segmentation accuracy of the network. Experimental results on Massachusetts, DeepGlobe Challenge, and UAV Road Dataset show that the Tiny-AAResUNet performs well in road extraction, with Intersection over Union (IoU) (94.27%), lower trainable parameters (1.20 M), and inference time (1.14 sec). Comparative results on the proposed method have outperformed in road extraction with ten recently established deep learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_VZG7GZ应助研友_8DAv0L采纳,获得10
3秒前
3秒前
Meng完成签到,获得积分10
5秒前
yummybacon完成签到,获得积分10
8秒前
铁甲小杨完成签到,获得积分10
8秒前
8秒前
甜蜜发带完成签到 ,获得积分10
9秒前
请叫我风吹麦浪应助scihub采纳,获得10
10秒前
11秒前
充电宝应助若隐若现采纳,获得10
13秒前
rebeccahu应助快去读文献采纳,获得10
13秒前
蓬蒿人发布了新的文献求助10
14秒前
玫瑰窃贼(情绪稳定版)完成签到,获得积分10
14秒前
dxd小郭发布了新的文献求助10
15秒前
15秒前
16秒前
归尘完成签到,获得积分10
16秒前
17秒前
17秒前
totoro完成签到,获得积分10
18秒前
幽一完成签到,获得积分10
18秒前
卖火柴的小女孩完成签到,获得积分10
18秒前
剁辣椒蒸鱼头完成签到 ,获得积分10
19秒前
www发布了新的文献求助10
20秒前
快去读文献完成签到,获得积分20
21秒前
Hello paper发布了新的文献求助10
21秒前
北陌完成签到,获得积分10
26秒前
蓬蒿人完成签到,获得积分20
26秒前
huanhuan发布了新的文献求助10
28秒前
李健的小迷弟应助JIA采纳,获得10
30秒前
浩二应助杨羕采纳,获得10
30秒前
丰富成败发布了新的文献求助30
32秒前
完美世界应助李嘉琪采纳,获得30
32秒前
wanci应助ujnujn采纳,获得10
33秒前
专炸油条完成签到 ,获得积分10
33秒前
林也行完成签到,获得积分10
33秒前
35秒前
CucRuotThua完成签到,获得积分10
36秒前
feizao完成签到,获得积分10
37秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464442
求助须知:如何正确求助?哪些是违规求助? 3057804
关于积分的说明 9058430
捐赠科研通 2747884
什么是DOI,文献DOI怎么找? 1507625
科研通“疑难数据库(出版商)”最低求助积分说明 696592
邀请新用户注册赠送积分活动 696200