Multicenter Evaluation of a Weakly Supervised Deep Learning Model for Lymph Node Diagnosis in Rectal Cancer at MRI

医学 结直肠癌 淋巴结 放射科 癌症 人工智能 深度学习 病理 计算机科学 内科学
作者
Wei Xia,Dandan Li,Wenguang He,Perry J. Pickhardt,Junming Jian,Rui Zhang,Junjie Zhang,Ruirui Song,Tong Tong,Xiaotang Yang,Xin Gao,Yanfen Cui
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (2)
标识
DOI:10.1148/ryai.230152
摘要

Purpose To develop a Weakly supervISed model DevelOpment fraMework (WISDOM) model to construct a lymph node (LN) diagnosis model for patients with rectal cancer (RC) that uses preoperative MRI data coupled with postoperative patient-level pathologic information. Materials and Methods In this retrospective study, the WISDOM model was built using MRI (T2-weighted and diffusion-weighted imaging) and patient-level pathologic information (the number of postoperatively confirmed metastatic LNs and resected LNs) based on the data of patients with RC between January 2016 and November 2017. The incremental value of the model in assisting radiologists was investigated. The performances in binary and ternary N staging were evaluated using area under the receiver operating characteristic curve (AUC) and the concordance index (C index), respectively. Results A total of 1014 patients (median age, 62 years; IQR, 54–68 years; 590 male) were analyzed, including the training cohort (n = 589) and internal test cohort (n = 146) from center 1 and two external test cohorts (cohort 1: 117; cohort 2: 162) from centers 2 and 3. The WISDOM model yielded an overall AUC of 0.81 and C index of 0.765, significantly outperforming junior radiologists (AUC = 0.69, P < .001; C index = 0.689, P < .001) and performing comparably with senior radiologists (AUC = 0.79, P = .21; C index = 0.788, P = .22). Moreover, the model significantly improved the performance of junior radiologists (AUC = 0.80, P < .001; C index = 0.798, P < .001) and senior radiologists (AUC = 0.88, P < .001; C index = 0.869, P < .001). Conclusion This study demonstrates the potential of WISDOM as a useful LN diagnosis method using routine rectal MRI data. The improved radiologist performance observed with model assistance highlights the potential clinical utility of WISDOM in practice. Keywords: MR Imaging, Abdomen/GI, Rectum, Computer Applications-Detection/Diagnosis Supplemental material is available for this article. Published under a CC BY 4.0 license.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
KSDalton完成签到,获得积分10
1秒前
scoot发布了新的文献求助10
2秒前
运医瘦瘦花生完成签到,获得积分10
2秒前
萤照夜清完成签到,获得积分20
3秒前
李爱国应助过时的砖头采纳,获得10
3秒前
无花果应助剑指天涯采纳,获得30
3秒前
毛豆应助剑指天涯采纳,获得10
3秒前
3秒前
4秒前
劲秉应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
枫叶应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
5秒前
无餍应助科研通管家采纳,获得30
5秒前
KARRY应助科研通管家采纳,获得10
5秒前
5秒前
小黑应助科研通管家采纳,获得50
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
KARRY应助科研通管家采纳,获得10
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
KARRY应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
6秒前
Mchong完成签到,获得积分20
6秒前
6秒前
scoot完成签到,获得积分10
7秒前
chenzibo完成签到,获得积分10
8秒前
8秒前
白胖胖完成签到,获得积分10
8秒前
英俊的铭应助七七采纳,获得10
9秒前
10秒前
qizhixu发布了新的文献求助10
12秒前
半夏发布了新的文献求助10
12秒前
12秒前
缺文献发布了新的文献求助10
12秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644