Superpixel-based multi-scale multi-instance learning for hyperspectral image classification

模式识别(心理学) 人工智能 高光谱成像 计算机科学 像素 边距(机器学习) 比例(比率) 水准点(测量) 机器学习 地理 地图学 大地测量学
作者
Shiluo Huang,Zheng Liu,Wei Jin,Ying Mu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:149: 110257-110257 被引量:6
标识
DOI:10.1016/j.patcog.2024.110257
摘要

Superpixels can define meaningful local regions within a hyperspectral image (HSI) and have become the building blocks of various HSI classification methods. The superpixels in HSIs consist of multiple spectral pixels, sharing a similar structure with the data in multi-instance learning (MIL). However, the potential of MIL methods in the field of HSI classification has been rarely explored. In this paper, we propose the superpixel-based multi-scale multi-instance learning (MSMIL) framework, enhancing the superpixel representation with MIL for the first time. Segmenting the HSIs with superpixels, MSMIL converts the HSI classification into MIL problems and extracts superpixel representations via the MIL method, namely multi-instance factor analysis (MIFA). Compared with the existing methods focusing exclusively on the local information, MIFA utilizes the deviations from an overall generative model to describe the superpixels, retaining both the local and the global information. Moreover, MSMIL introduces multi-scale superpixels and a spectral-spatial decision fusion strategy for further refinement, where the results of multi-scale superpixel maps are weighted according to prediction certainty and spatial consistency. The proposed method is evaluated on four benchmark datasets and achieves competitive results. For example, MSMIL outperforms the comparison methods with a margin of 5% overall accuracy on the Indian Pines dataset, when 2% pixels are selected as the training set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桐桐应助未来采纳,获得30
1秒前
为治发布了新的文献求助10
1秒前
背后雨柏完成签到 ,获得积分10
1秒前
2秒前
xiejiaye完成签到,获得积分10
2秒前
CipherSage应助猪猪hero采纳,获得10
2秒前
2秒前
3秒前
科研通AI2S应助英勇冥王星采纳,获得10
3秒前
满当当发布了新的文献求助10
3秒前
3秒前
BaekHyun完成签到,获得积分10
4秒前
4秒前
MY发布了新的文献求助10
4秒前
小宇OvO完成签到,获得积分20
4秒前
Caism完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
光亮的冰薇完成签到 ,获得积分10
5秒前
SciGPT应助WS采纳,获得10
5秒前
nanonamo完成签到,获得积分10
5秒前
6秒前
cr完成签到,获得积分10
7秒前
7秒前
牵绊完成签到 ,获得积分10
7秒前
香蕉觅云应助享音采纳,获得10
7秒前
鹿lu发布了新的文献求助10
8秒前
WS发布了新的文献求助10
8秒前
8秒前
Ava应助Justtry采纳,获得10
8秒前
rui发布了新的文献求助30
8秒前
9秒前
9秒前
916应助小林采纳,获得10
10秒前
10秒前
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950635
求助须知:如何正确求助?哪些是违规求助? 3495998
关于积分的说明 11080354
捐赠科研通 3226418
什么是DOI,文献DOI怎么找? 1783846
邀请新用户注册赠送积分活动 867937
科研通“疑难数据库(出版商)”最低求助积分说明 800978