Superpixel-based multi-scale multi-instance learning for hyperspectral image classification

模式识别(心理学) 人工智能 高光谱成像 计算机科学 像素 边距(机器学习) 比例(比率) 水准点(测量) 机器学习 地理 地图学 大地测量学
作者
Shiluo Huang,Zheng Liu,Wei Jin,Ying Mu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:149: 110257-110257 被引量:6
标识
DOI:10.1016/j.patcog.2024.110257
摘要

Superpixels can define meaningful local regions within a hyperspectral image (HSI) and have become the building blocks of various HSI classification methods. The superpixels in HSIs consist of multiple spectral pixels, sharing a similar structure with the data in multi-instance learning (MIL). However, the potential of MIL methods in the field of HSI classification has been rarely explored. In this paper, we propose the superpixel-based multi-scale multi-instance learning (MSMIL) framework, enhancing the superpixel representation with MIL for the first time. Segmenting the HSIs with superpixels, MSMIL converts the HSI classification into MIL problems and extracts superpixel representations via the MIL method, namely multi-instance factor analysis (MIFA). Compared with the existing methods focusing exclusively on the local information, MIFA utilizes the deviations from an overall generative model to describe the superpixels, retaining both the local and the global information. Moreover, MSMIL introduces multi-scale superpixels and a spectral-spatial decision fusion strategy for further refinement, where the results of multi-scale superpixel maps are weighted according to prediction certainty and spatial consistency. The proposed method is evaluated on four benchmark datasets and achieves competitive results. For example, MSMIL outperforms the comparison methods with a margin of 5% overall accuracy on the Indian Pines dataset, when 2% pixels are selected as the training set.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糟糕的蘑菇完成签到,获得积分10
刚刚
领导范儿应助大气的梨愁采纳,获得10
1秒前
求助人员发布了新的文献求助10
1秒前
完美世界应助小纸白采纳,获得10
1秒前
shenya0810应助long采纳,获得10
1秒前
无极微光应助谁在说话采纳,获得20
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
堪妙松发布了新的文献求助20
3秒前
慕青应助Rubia采纳,获得10
3秒前
3秒前
4秒前
yannn1126发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
nnmm11发布了新的文献求助10
4秒前
100完成签到,获得积分10
5秒前
5秒前
All发布了新的文献求助10
6秒前
6秒前
紫麒麟发布了新的文献求助10
6秒前
安AN完成签到,获得积分10
6秒前
安静发布了新的文献求助10
7秒前
飞fei发布了新的文献求助50
8秒前
8秒前
陈忠正发布了新的文献求助20
8秒前
温十一应助111采纳,获得10
8秒前
9秒前
科研混子发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
11秒前
辣辣发布了新的文献求助10
11秒前
肆三一发布了新的文献求助10
12秒前
爆米花应助qww采纳,获得40
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513178
求助须知:如何正确求助?哪些是违规求助? 4607547
关于积分的说明 14505663
捐赠科研通 4543090
什么是DOI,文献DOI怎么找? 2489360
邀请新用户注册赠送积分活动 1471340
关于科研通互助平台的介绍 1443362