Dehazing Ultrasound using Diffusion Models

扩散 计算机科学 计算机视觉 超声波 超声成像 人工智能 放射科 医学 物理 热力学
作者
Tristan S.W. Stevens,F. Can Meral,Jason Yu,Iason Apostolakis,Jean-Luc Robert,Ruud J. G. van Sloun
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (10): 3546-3558 被引量:12
标识
DOI:10.1109/tmi.2024.3363460
摘要

Echocardiography has been a prominent tool for the diagnosis of cardiac disease. However, these diagnoses can be heavily impeded by poor image quality. Acoustic clutter emerges due to multipath reflections imposed by layers of skin, subcutaneous fat, and intercostal muscle between the transducer and heart. As a result, haze and other noise artifacts pose a real challenge to cardiac ultrasound imaging. In many cases, especially with difficult-to-image patients such as patients with obesity, a diagnosis from B-Mode ultrasound imaging is effectively rendered unusable, forcing sonographers to resort to contrast-enhanced ultrasound examinations or refer patients to other imaging modalities. Tissue harmonic imaging has been a popular approach to combat haze, but in severe cases is still heavily impacted by haze. Alternatively, denoising algorithms are typically unable to remove highly structured and correlated noise, such as haze. It remains a challenge to accurately describe the statistical properties of structured haze, and develop an inference method to subsequently remove it. Diffusion models have emerged as powerful generative models and have shown their effectiveness in a variety of inverse problems. In this work, we present a joint posterior sampling framework that combines two separate diffusion models to model the distribution of both clean ultrasound and haze in an unsupervised manner. Furthermore, we demonstrate techniques for effectively training diffusion models on radio-frequency ultrasound data and highlight the advantages over image data. Experiments on both in-vitro and in-vivo cardiac datasets show that the proposed dehazing method effectively removes haze while preserving signals from weakly reflected tissue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zed完成签到,获得积分10
1秒前
1秒前
3秒前
啦啦啦啦完成签到,获得积分10
5秒前
谦谦神棍发布了新的文献求助10
5秒前
8秒前
丰富傥发布了新的文献求助10
9秒前
华仔应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科目三应助霸气的思柔采纳,获得10
12秒前
13秒前
JamesYang发布了新的文献求助10
14秒前
大个应助凌惠娟采纳,获得10
14秒前
NexusExplorer应助可靠幻柏采纳,获得10
15秒前
syyw2021发布了新的文献求助10
16秒前
17秒前
zxc167完成签到,获得积分10
17秒前
浮游呦呦完成签到,获得积分10
18秒前
ding应助岸在海的深处采纳,获得10
18秒前
20秒前
Kiyotaka完成签到,获得积分10
21秒前
21秒前
JamesYang完成签到,获得积分10
21秒前
xupt唐僧发布了新的文献求助10
22秒前
隐形曼青应助qing采纳,获得10
22秒前
赘婿应助guoxihan采纳,获得10
23秒前
23秒前
25秒前
flysky120发布了新的文献求助10
26秒前
灿灿发布了新的文献求助10
27秒前
Ava应助sims采纳,获得10
27秒前
香蕉觅云应助JamesYang采纳,获得30
28秒前
29秒前
29秒前
谨慎从露发布了新的文献求助10
31秒前
31秒前
32秒前
33秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Three Stars Each: The Astrolabes and Related Texts 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3380680
求助须知:如何正确求助?哪些是违规求助? 2995820
关于积分的说明 8765665
捐赠科研通 2680884
什么是DOI,文献DOI怎么找? 1468231
科研通“疑难数据库(出版商)”最低求助积分说明 678902
邀请新用户注册赠送积分活动 670951