An open-source machine-learning application for predicting pixel-to-pixel NDVI regression from RGB calibrated images

归一化差异植被指数 RGB颜色模型 像素 高光谱成像 多光谱图像 遥感 人工智能 计算机科学 数学 叶面积指数 地理 生态学 生物
作者
Lavinia Moscovini,Luciano Ortenzi,Federico Pallottino,Simone Figorilli,Simona Violino,Catello Pane,Valerio Capparella,Simone Vasta,Corrado Costa
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:216: 108536-108536 被引量:3
标识
DOI:10.1016/j.compag.2023.108536
摘要

The Normalized Difference Vegetation Index (NDVI) is the most common index to measure vegetation in agriculture and create classified prescription maps used for several purposes. It is obtained as the ratio between information from the visible and near infrared spectral bands. The calculation of NDVI often uses very expensive hyperspectral and multispectral optical sensors. This study aims to develop an efficient model to extract NDVI data from RGB images. During the work were acquired images, of different plant species at different vegetation status, through a snapshot hyperspectral camera (Specim IQ) featuring natively superimposed RGB sensor whose images were calibrated a posteriori (sRGB). NDVI was predicted from sRGB images using a Shallow-regressive neural network that performs a pixel-pixel regression. The model has been then tested on around 1000 drone images acquired by a 6x Sentera sensor to test the efficiency of the applied model. The model has been used to estimate the numerical value of NDVI and the classes produced by a clustering method (k-means). The results of this work showed that the calibrated images had a very high correlation with the NDVI in validation (r = 0.91), maintaining good performances (r = 0.71) when applied to a set of data acquired with a different non-co-registered sensor. Therefore, for the first time this work has shown that the health of vegetation through the NDVI could be calculated using unexpensive RGB device adopting a pixel-pixel regression AI approach. The approach shows its importance especially for small-sized farms where profit would not allow for the budget to access multispectral cameras and heavy carriers (i.e., UAV).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助lalala0530采纳,获得10
1秒前
wys发布了新的文献求助10
1秒前
HH发布了新的文献求助10
2秒前
ASD完成签到,获得积分10
2秒前
ZQL完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
木头人123发布了新的文献求助10
5秒前
吴丽雪完成签到,获得积分10
6秒前
6秒前
8秒前
8秒前
8秒前
科研通AI5应助小赵采纳,获得10
8秒前
9秒前
9秒前
Mayday发布了新的文献求助10
9秒前
10秒前
lightgo应助wille采纳,获得10
13秒前
13秒前
方墨发布了新的文献求助10
13秒前
13秒前
科研通AI5应助孙成成采纳,获得10
14秒前
14秒前
sun发布了新的文献求助10
15秒前
song完成签到 ,获得积分10
15秒前
zz发布了新的文献求助10
16秒前
17秒前
20秒前
20秒前
沉思、发布了新的文献求助10
21秒前
21秒前
zhuanghuachao发布了新的文献求助10
21秒前
heartbeat发布了新的文献求助10
21秒前
22秒前
23秒前
zz完成签到,获得积分10
24秒前
25秒前
空空发布了新的文献求助10
25秒前
高分求助中
All the Birds of the World 3000
General Equilibrium, Capital and Macroeconomics 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3724321
求助须知:如何正确求助?哪些是违规求助? 3269814
关于积分的说明 9962200
捐赠科研通 2984300
什么是DOI,文献DOI怎么找? 1637329
邀请新用户注册赠送积分活动 777453
科研通“疑难数据库(出版商)”最低求助积分说明 747035