Effect of Comorbidities Features in Machine Learning Models for Survival Analysis to Predict Prodromal Alzheimer’s Disease

共病 痴呆 疾病 特征选择 一致性 医学 特征(语言学) 神经影像学 机器学习 前驱症状 人工智能 计算机科学 内科学 精神科 哲学 语言学 精神病
作者
Ferial Abuhantash,Aamna Al Shehhi,Leontios Hadjileontiadis,Mohamed L. Seghier
标识
DOI:10.1109/embc40787.2023.10341171
摘要

Alzheimer’s Disease (AD) is the most common form of dementia, specifically a progressive degenerative disorder affecting 47 million people worldwide and is only expected to grow in the elderly population. The detection of AD in its early stages is crucial to allow early intervention aiding in the prevention or slowing down of the disease. The effect of using comorbidity features in machine learning models to predict the time until a patient develops a prodrome was observed. In this study, we used Alzheimer’s Disease Neuroimaging Initiative (ADNI) high-dimensional clinical data to compare the performance of six machine learning algorithms for survival analysis, combined with six feature selection methods trained on two settings: with and without comorbidities features. Our ridge model combined with permutation feature selection achieves maximum performance of 0.90 when using comorbidity features with the concordance index as a performance indicator. This demonstrated that incorporating comorbidities into the feature set enhances the performance of survival analysis for Alzheimer’s disease. There is potential to identify risk factors (coronary artery disease) from comorbidities which could guide preventative care based on medical history.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
芽衣发布了新的文献求助20
2秒前
hyhyhyhy发布了新的文献求助10
4秒前
zpz完成签到,获得积分10
4秒前
EY发布了新的文献求助10
5秒前
6秒前
7秒前
MJ2023完成签到,获得积分10
8秒前
8秒前
ding应助铅笔羊采纳,获得10
9秒前
萧水白应助柠、采纳,获得10
9秒前
Singularity应助港崽宝宝采纳,获得10
11秒前
细心青烟发布了新的文献求助10
11秒前
qqwe发布了新的文献求助10
13秒前
13秒前
桐桐应助Ting采纳,获得10
15秒前
16秒前
haokeyan发布了新的文献求助10
16秒前
SUN发布了新的文献求助10
17秒前
xiaxia发布了新的文献求助10
18秒前
Nico发布了新的文献求助10
19秒前
20秒前
20秒前
23秒前
23秒前
wyz完成签到,获得积分10
23秒前
轻松小之发布了新的文献求助30
24秒前
25秒前
26秒前
run完成签到 ,获得积分10
27秒前
wyz发布了新的文献求助30
28秒前
窦羊青完成签到,获得积分10
30秒前
30秒前
hyhyhyhy发布了新的文献求助10
31秒前
31秒前
qqwe完成签到,获得积分20
32秒前
椰椰发布了新的文献求助10
32秒前
32秒前
CC完成签到,获得积分10
33秒前
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310147
求助须知:如何正确求助?哪些是违规求助? 2943159
关于积分的说明 8512950
捐赠科研通 2618384
什么是DOI,文献DOI怎么找? 1431040
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649540