亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Forecasting monthly gas field production based on the CNN-LSTM model

计算机科学 自回归积分移动平均 领域(数学) 卷积神经网络 人工智能 条件随机场 生产(经济) 循环神经网络 油藏计算 随机森林 深度学习 天然气田 人工神经网络 机器学习 模式识别(心理学) 时间序列 数学 天然气 工程类 纯数学 经济 宏观经济学 废物管理
作者
Wenshu Zha,Yuping Liu,Yujin Wan,Ruilan Luo,Daolun Li,Shan Yang,Yanmei Xu
出处
期刊:Energy [Elsevier BV]
卷期号:260: 124889-124889 被引量:186
标识
DOI:10.1016/j.energy.2022.124889
摘要

Accurate prediction of gas field production is an important task for reservoir engineers, which is challenging due to many unknown reservoir parameters. Aiming to have a low-cost, intelligent, and robust method to predict gas and water production for a given gas reservoir, this paper proposes a CNN-LSTM model to predict gas field production based on a gas field in southwest China. The convolutional neural network (CNN) has a feature extraction ability, and the long short-term memory network (LSTM) can learn sequence dependence. By the combination of the two abilities, the CNN-LSTM model can describe the changing trend of gas field production. A new prediction strategy named partly unknown recursive prediction strategy (PURPS) is proposed that some input features are estimated using the predicted gas and water production according to known equations. The results show that the CNN-LSTM model can effectively predict gas field production. A detailed performance comparison was conducted between CNN-LSTM and other models. The comparison shows that the proposed CNN-LSTM model outperforms the existing methods. The monthly gas production average MAPE errors of the three different stages are CNN-LSTM (7.7%), RNN (18%), Random Forest (23.17%), ARIMA (25.3%), DNN (28.3%), Support Vector Machine (28.3%), CNN (41%), and LSTM (46%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
20秒前
何处西风无酒旗完成签到,获得积分10
29秒前
29秒前
29秒前
量子星尘发布了新的文献求助10
40秒前
量子星尘发布了新的文献求助10
50秒前
50秒前
51秒前
ANESTHESIA_XY完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
默默然发布了新的文献求助10
1分钟前
Tiger完成签到,获得积分10
1分钟前
1分钟前
97完成签到,获得积分10
1分钟前
1分钟前
鱼鱼鱼完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666365
求助须知:如何正确求助?哪些是违规求助? 3225404
关于积分的说明 9762962
捐赠科研通 2935270
什么是DOI,文献DOI怎么找? 1607588
邀请新用户注册赠送积分活动 759266
科研通“疑难数据库(出版商)”最低求助积分说明 735188