计算机科学
差别隐私
朴素贝叶斯分类器
同态加密
背景(考古学)
密码系统
机器学习
方案(数学)
人工智能
信息隐私
贝叶斯定理
人气
算法
数据挖掘
密码学
贝叶斯概率
加密
计算机安全
支持向量机
数学
生物
数学分析
古生物学
社会心理学
心理学
作者
Rui Wang,Xiangyun Tang,Meng Shen,Liehuang Zhu
标识
DOI:10.1109/icc45855.2022.9838847
摘要
The growing popularity of Machine learning (ML) that appreciates high quality training datasets collected from multiple organizations raises natural questions about the privacy guarantees that can be provided in such settings. Our work tackles this problem in the context of multi-party secure ML wherein multiple organizations provide their sensitive datasets to a data user and train a Naive Bayes (NB) model with the data user. We propose PPNB, a privacy-preserving scheme for training NB models, based on Homomorphic Cryptosystem (HC) and Differential Privacy (DP). PPNB achieves a balance performance between efficiency and accuracy in multi-party secure ML, enabled flexible switch among different tradeoffs by parameter tuning. Extensive experimental results validate the effectiveness of PPNB.
科研通智能强力驱动
Strongly Powered by AbleSci AI