IMG-13. PREDICTION OF PEDIATRIC MEDULLOBLASTOMA SUBGROUPS USING CLINICO-RADIOMIC ANALYSIS

髓母细胞瘤 IMG公司 医学 计算机科学 操作系统 病理
作者
Ariana Familiar,Anahita Fathi Kazerooni,Adam Kraya,Komal S. Rathi,Nastaran Khalili,Deep Gandhi,Hannah Anderson,Aria Mahtabfar,Jeffrey B. Ware,Arastoo Vossough,Phillip B. Storm,Adam Resnick,Ali Nabavizadeh
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (Supplement_4)
标识
DOI:10.1093/neuonc/noae064.350
摘要

Abstract BACKGROUND Pediatric medulloblastoma is an aggressive brain tumor and tailored treatment has the potential to lead to better patient outcomes. The WHO 2021 classification of medulloblastoma involves an integrated diagnosis that incorporates genetically defined characteristics, including molecular subgroups (WNT-activated, SHH-activated TP53 wildtype, SHH-activated TP53-mutant, and non-WNT/non-SHH). Clinically acquired radiology (MRI) imaging characteristics could provide a non-invasive, pre-treatment biomarker for such subgroups faster than standard methylation-based turn-around times, and for use in countries where methylation is not available. METHODS Herein, we utilize a multi-institutional dataset of multi-parametric, clinical MRIs of pediatric medulloblastoma patients from the Children’s Brain Tumor Network (median age = 8.9 years) to assess the predictive value of patient-level radiomic and clinical factors. 89 subjects with treatment-naïve T1w/T1w contrast-enhanced/T2w/FLAIR images and molecular subgroups (derived from methylation profiling or RNA sequencing) were included (SHH=18, WNT=10, non-SHH/WNT=61). Radiomic features were extracted from a radiologist-defined volumetric (3D) segmentation for each subject separately (including solid tumor, cystic, and peritumoral edema regions). Clinical variables included sex, age at diagnosis, and metastatic disease. 20 top performing features were selected based on an ANOVA between features/classes and subsequently used to train and evaluate three separate classification models based on radiomic, clinical, or clinico-radiomic features (Linear SVM; leave-one-subject-out cross-validation). RESULTS The combined clinico-radiomic model had the top performance (AUC=0.83) followed by radiomic (0.78) and clinical (0.5) for predicting SHH/WNT vs. non-SHH/WNT groups. Predictive radiomic features included intensity-based statistics (T1w, T2w, T1w-CE), texture (T2w), and morphological shape characteristics. CONCLUSIONS Our findings show potential for early prediction of molecular subgroups using baseline imaging that could lend to faster decision-making in patient treatment planning. Future work aims to evaluate the inclusion of histological characteristics for a full integrated diagnostic approach as well as assessment of prognostic value of the combined multi-omic features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy爱科研完成签到,获得积分10
1秒前
韶华若锦完成签到 ,获得积分10
4秒前
细心的盼易完成签到 ,获得积分10
5秒前
弧光完成签到 ,获得积分0
7秒前
浅浅殇完成签到,获得积分10
7秒前
小白鼠完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
萧布完成签到,获得积分10
9秒前
合适的平安完成签到 ,获得积分10
11秒前
小红要发文章哦完成签到,获得积分10
12秒前
昔昔完成签到 ,获得积分10
13秒前
酷酷李可爱婕完成签到 ,获得积分10
14秒前
小平完成签到,获得积分10
14秒前
小树完成签到,获得积分10
15秒前
为你等候完成签到,获得积分10
16秒前
小彭陪小崔读个研完成签到 ,获得积分10
18秒前
菜鸟学习完成签到 ,获得积分10
19秒前
木雨亦潇潇完成签到,获得积分10
21秒前
guo完成签到,获得积分10
22秒前
青桔完成签到,获得积分10
22秒前
斯文败类应助自信的谷南采纳,获得10
22秒前
23秒前
一白完成签到 ,获得积分10
23秒前
如意雨雪完成签到 ,获得积分10
24秒前
怡心亭完成签到 ,获得积分10
24秒前
是我呀吼完成签到,获得积分10
25秒前
慕容杏子完成签到,获得积分10
27秒前
Lin_K发布了新的文献求助10
28秒前
彭于彦祖完成签到,获得积分0
29秒前
Hsevencc完成签到 ,获得积分10
29秒前
古菇顾完成签到 ,获得积分10
30秒前
梅特卡夫完成签到,获得积分10
32秒前
看文献完成签到,获得积分0
33秒前
小乙猪完成签到 ,获得积分0
33秒前
15940203654完成签到 ,获得积分10
34秒前
GQL发布了新的文献求助10
35秒前
曾经沛白完成签到 ,获得积分10
35秒前
蜀山刀客完成签到,获得积分10
36秒前
Xx完成签到 ,获得积分10
36秒前
jeffrey完成签到,获得积分0
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079744
求助须知:如何正确求助?哪些是违规求助? 4297883
关于积分的说明 13389008
捐赠科研通 4121176
什么是DOI,文献DOI怎么找? 2257046
邀请新用户注册赠送积分活动 1261338
关于科研通互助平台的介绍 1195430