IMG-13. PREDICTION OF PEDIATRIC MEDULLOBLASTOMA SUBGROUPS USING CLINICO-RADIOMIC ANALYSIS

髓母细胞瘤 IMG公司 医学 计算机科学 操作系统 病理
作者
Ariana Familiar,Anahita Fathi Kazerooni,Adam Kraya,Komal S. Rathi,Nastaran Khalili,Deep Gandhi,Hannah Anderson,Aria Mahtabfar,Jeffrey B. Ware,Arastoo Vossough,Phillip B. Storm,Adam Resnick,Ali Nabavizadeh
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (Supplement_4)
标识
DOI:10.1093/neuonc/noae064.350
摘要

Abstract BACKGROUND Pediatric medulloblastoma is an aggressive brain tumor and tailored treatment has the potential to lead to better patient outcomes. The WHO 2021 classification of medulloblastoma involves an integrated diagnosis that incorporates genetically defined characteristics, including molecular subgroups (WNT-activated, SHH-activated TP53 wildtype, SHH-activated TP53-mutant, and non-WNT/non-SHH). Clinically acquired radiology (MRI) imaging characteristics could provide a non-invasive, pre-treatment biomarker for such subgroups faster than standard methylation-based turn-around times, and for use in countries where methylation is not available. METHODS Herein, we utilize a multi-institutional dataset of multi-parametric, clinical MRIs of pediatric medulloblastoma patients from the Children’s Brain Tumor Network (median age = 8.9 years) to assess the predictive value of patient-level radiomic and clinical factors. 89 subjects with treatment-naïve T1w/T1w contrast-enhanced/T2w/FLAIR images and molecular subgroups (derived from methylation profiling or RNA sequencing) were included (SHH=18, WNT=10, non-SHH/WNT=61). Radiomic features were extracted from a radiologist-defined volumetric (3D) segmentation for each subject separately (including solid tumor, cystic, and peritumoral edema regions). Clinical variables included sex, age at diagnosis, and metastatic disease. 20 top performing features were selected based on an ANOVA between features/classes and subsequently used to train and evaluate three separate classification models based on radiomic, clinical, or clinico-radiomic features (Linear SVM; leave-one-subject-out cross-validation). RESULTS The combined clinico-radiomic model had the top performance (AUC=0.83) followed by radiomic (0.78) and clinical (0.5) for predicting SHH/WNT vs. non-SHH/WNT groups. Predictive radiomic features included intensity-based statistics (T1w, T2w, T1w-CE), texture (T2w), and morphological shape characteristics. CONCLUSIONS Our findings show potential for early prediction of molecular subgroups using baseline imaging that could lend to faster decision-making in patient treatment planning. Future work aims to evaluate the inclusion of histological characteristics for a full integrated diagnostic approach as well as assessment of prognostic value of the combined multi-omic features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小肖完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
6秒前
酷波er应助bobo采纳,获得10
7秒前
8秒前
YY关闭了YY文献求助
9秒前
刘欢发布了新的文献求助10
10秒前
12秒前
芒果完成签到 ,获得积分10
13秒前
14秒前
bb完成签到,获得积分10
16秒前
白菜包子发布了新的文献求助10
18秒前
呜呜老婆完成签到 ,获得积分10
19秒前
小于发布了新的文献求助10
19秒前
LITAO完成签到 ,获得积分10
20秒前
Wilson完成签到 ,获得积分10
21秒前
23秒前
23秒前
24秒前
桥豆麻袋完成签到,获得积分10
25秒前
酷波er应助小于采纳,获得10
26秒前
aaliyah完成签到 ,获得积分10
29秒前
刘欢发布了新的文献求助10
30秒前
皮念寒完成签到,获得积分10
32秒前
白菜包子完成签到,获得积分10
32秒前
程勋航完成签到,获得积分10
34秒前
烦死啦发布了新的文献求助30
34秒前
汉堡包应助赵峰采纳,获得10
35秒前
小于完成签到,获得积分10
36秒前
小可猪完成签到,获得积分10
37秒前
小丸子发布了新的文献求助10
38秒前
煎饼果子不加葱完成签到,获得积分10
38秒前
40秒前
40秒前
41秒前
41秒前
41秒前
YY关闭了YY文献求助
44秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352209
求助须知:如何正确求助?哪些是违规求助? 2977519
关于积分的说明 8679749
捐赠科研通 2658470
什么是DOI,文献DOI怎么找? 1455802
科研通“疑难数据库(出版商)”最低求助积分说明 674095
邀请新用户注册赠送积分活动 664654