亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

IMG-13. PREDICTION OF PEDIATRIC MEDULLOBLASTOMA SUBGROUPS USING CLINICO-RADIOMIC ANALYSIS

髓母细胞瘤 IMG公司 医学 计算机科学 操作系统 病理
作者
Ariana Familiar,Anahita Fathi Kazerooni,Adam Kraya,Komal S. Rathi,Nastaran Khalili,Deep Gandhi,Hannah Anderson,Aria Mahtabfar,Jeffrey B. Ware,Arastoo Vossough,Phillip B. Storm,Adam Resnick,Ali Nabavizadeh
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (Supplement_4)
标识
DOI:10.1093/neuonc/noae064.350
摘要

Abstract BACKGROUND Pediatric medulloblastoma is an aggressive brain tumor and tailored treatment has the potential to lead to better patient outcomes. The WHO 2021 classification of medulloblastoma involves an integrated diagnosis that incorporates genetically defined characteristics, including molecular subgroups (WNT-activated, SHH-activated TP53 wildtype, SHH-activated TP53-mutant, and non-WNT/non-SHH). Clinically acquired radiology (MRI) imaging characteristics could provide a non-invasive, pre-treatment biomarker for such subgroups faster than standard methylation-based turn-around times, and for use in countries where methylation is not available. METHODS Herein, we utilize a multi-institutional dataset of multi-parametric, clinical MRIs of pediatric medulloblastoma patients from the Children’s Brain Tumor Network (median age = 8.9 years) to assess the predictive value of patient-level radiomic and clinical factors. 89 subjects with treatment-naïve T1w/T1w contrast-enhanced/T2w/FLAIR images and molecular subgroups (derived from methylation profiling or RNA sequencing) were included (SHH=18, WNT=10, non-SHH/WNT=61). Radiomic features were extracted from a radiologist-defined volumetric (3D) segmentation for each subject separately (including solid tumor, cystic, and peritumoral edema regions). Clinical variables included sex, age at diagnosis, and metastatic disease. 20 top performing features were selected based on an ANOVA between features/classes and subsequently used to train and evaluate three separate classification models based on radiomic, clinical, or clinico-radiomic features (Linear SVM; leave-one-subject-out cross-validation). RESULTS The combined clinico-radiomic model had the top performance (AUC=0.83) followed by radiomic (0.78) and clinical (0.5) for predicting SHH/WNT vs. non-SHH/WNT groups. Predictive radiomic features included intensity-based statistics (T1w, T2w, T1w-CE), texture (T2w), and morphological shape characteristics. CONCLUSIONS Our findings show potential for early prediction of molecular subgroups using baseline imaging that could lend to faster decision-making in patient treatment planning. Future work aims to evaluate the inclusion of histological characteristics for a full integrated diagnostic approach as well as assessment of prognostic value of the combined multi-omic features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
8秒前
量子星尘发布了新的文献求助30
10秒前
10秒前
Tobby发布了新的文献求助10
13秒前
小小猪完成签到,获得积分10
14秒前
21秒前
零玖完成签到 ,获得积分10
29秒前
41秒前
xiaozhang发布了新的文献求助10
43秒前
小马甲应助xiaozhang采纳,获得10
56秒前
1分钟前
lucky发布了新的文献求助10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
平常念蕾完成签到,获得积分10
1分钟前
TK完成签到 ,获得积分10
1分钟前
Zx_1993应助心灵美的大山采纳,获得20
1分钟前
2分钟前
平常念蕾发布了新的文献求助10
2分钟前
水刃木完成签到,获得积分10
2分钟前
2分钟前
elliotzzz发布了新的文献求助10
2分钟前
Shion完成签到,获得积分10
2分钟前
希望天下0贩的0应助yo采纳,获得10
2分钟前
oceana发布了新的文献求助10
2分钟前
浮游应助yqt采纳,获得30
2分钟前
oceana完成签到,获得积分10
2分钟前
2分钟前
所所应助平常念蕾采纳,获得10
3分钟前
yo发布了新的文献求助10
3分钟前
3分钟前
elliotzzz应助jikngsk采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426408
求助须知:如何正确求助?哪些是违规求助? 4540188
关于积分的说明 14171785
捐赠科研通 4457921
什么是DOI,文献DOI怎么找? 2444736
邀请新用户注册赠送积分活动 1435738
关于科研通互助平台的介绍 1413211