IMG-13. PREDICTION OF PEDIATRIC MEDULLOBLASTOMA SUBGROUPS USING CLINICO-RADIOMIC ANALYSIS

髓母细胞瘤 IMG公司 医学 计算机科学 操作系统 病理
作者
Ariana Familiar,Anahita Fathi Kazerooni,Adam Kraya,Komal S. Rathi,Nastaran Khalili,Deep Gandhi,Hannah Anderson,Aria Mahtabfar,Jeffrey B. Ware,Arastoo Vossough,Phillip B. Storm,Adam Resnick,Ali Nabavizadeh
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (Supplement_4)
标识
DOI:10.1093/neuonc/noae064.350
摘要

Abstract BACKGROUND Pediatric medulloblastoma is an aggressive brain tumor and tailored treatment has the potential to lead to better patient outcomes. The WHO 2021 classification of medulloblastoma involves an integrated diagnosis that incorporates genetically defined characteristics, including molecular subgroups (WNT-activated, SHH-activated TP53 wildtype, SHH-activated TP53-mutant, and non-WNT/non-SHH). Clinically acquired radiology (MRI) imaging characteristics could provide a non-invasive, pre-treatment biomarker for such subgroups faster than standard methylation-based turn-around times, and for use in countries where methylation is not available. METHODS Herein, we utilize a multi-institutional dataset of multi-parametric, clinical MRIs of pediatric medulloblastoma patients from the Children’s Brain Tumor Network (median age = 8.9 years) to assess the predictive value of patient-level radiomic and clinical factors. 89 subjects with treatment-naïve T1w/T1w contrast-enhanced/T2w/FLAIR images and molecular subgroups (derived from methylation profiling or RNA sequencing) were included (SHH=18, WNT=10, non-SHH/WNT=61). Radiomic features were extracted from a radiologist-defined volumetric (3D) segmentation for each subject separately (including solid tumor, cystic, and peritumoral edema regions). Clinical variables included sex, age at diagnosis, and metastatic disease. 20 top performing features were selected based on an ANOVA between features/classes and subsequently used to train and evaluate three separate classification models based on radiomic, clinical, or clinico-radiomic features (Linear SVM; leave-one-subject-out cross-validation). RESULTS The combined clinico-radiomic model had the top performance (AUC=0.83) followed by radiomic (0.78) and clinical (0.5) for predicting SHH/WNT vs. non-SHH/WNT groups. Predictive radiomic features included intensity-based statistics (T1w, T2w, T1w-CE), texture (T2w), and morphological shape characteristics. CONCLUSIONS Our findings show potential for early prediction of molecular subgroups using baseline imaging that could lend to faster decision-making in patient treatment planning. Future work aims to evaluate the inclusion of histological characteristics for a full integrated diagnostic approach as well as assessment of prognostic value of the combined multi-omic features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dsajkdlas发布了新的文献求助10
刚刚
脑洞疼应助执着绿草采纳,获得10
1秒前
浮游应助黄4335采纳,获得10
1秒前
沅沅完成签到 ,获得积分10
2秒前
2秒前
右旋王小二完成签到,获得积分10
2秒前
kk发布了新的文献求助10
2秒前
3秒前
FashionBoy应助nihao采纳,获得10
3秒前
4秒前
Hestia发布了新的文献求助10
5秒前
lilinxin发布了新的文献求助30
5秒前
科研通AI6应助Album采纳,获得10
6秒前
火龙果发布了新的文献求助20
7秒前
豪豪完成签到,获得积分10
7秒前
ding应助aco采纳,获得10
7秒前
欢呼山雁完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
10秒前
man完成签到,获得积分10
10秒前
10秒前
慕青应助丛士乔采纳,获得10
11秒前
Hello应助乔晶采纳,获得10
11秒前
吧唧一笑的go完成签到,获得积分10
12秒前
1Yer6完成签到 ,获得积分10
12秒前
一方通行完成签到,获得积分10
12秒前
邹同学发布了新的文献求助10
13秒前
phuocnlh完成签到,获得积分10
14秒前
Hello应助Hestia采纳,获得10
15秒前
cangmingzi完成签到,获得积分20
15秒前
gg发布了新的文献求助10
15秒前
Pikaluo完成签到 ,获得积分10
15秒前
15秒前
Samuel完成签到,获得积分10
16秒前
成就的白羊完成签到,获得积分10
17秒前
lilinxin完成签到,获得积分10
20秒前
hikari完成签到 ,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633382
求助须知:如何正确求助?哪些是违规求助? 4029342
关于积分的说明 12467045
捐赠科研通 3715550
什么是DOI,文献DOI怎么找? 2050235
邀请新用户注册赠送积分活动 1081814
科研通“疑难数据库(出版商)”最低求助积分说明 964080