亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DCNeT: A disease comorbidity network-based temporal deep learning framework to predict cardiovascular risk in patients with mental disorders

共病 计算机科学 疾病 机器学习 人工智能 深度学习 数据挖掘 医学 精神科 内科学
作者
Hang Qiu,Ping Yang,Liya Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:254: 124312-124312 被引量:1
标识
DOI:10.1016/j.eswa.2024.124312
摘要

Patients with mental disorders (MDs) are at higher subsequent risk of developing cardiovascular diseases (CVDs) than the general population. Early identification of cardiovascular risk in patients with MDs is beneficial for timely intervention and reducing disease burden. Recently, deep learning approaches have been increasingly applied in CVDs risk prediction. However, these methods have three major issues: 1) mostly relying on multiple types of clinical data, 2) not sufficiently mining and utilizing comorbidity patterns hidden in complex correlations among various diseases, and 3) not fully leveraging the time information, including the irregular intervals. To address these issues, we propose a disease comorbidity network-based temporal deep learning framework (DCNeT) to predict the subsequent CVDs risk for patients with MDs based on routinely collected administrative health data. Firstly, to identify the comorbidity patterns of MDs, we construct a disease comorbidity network (DCN) for MDs and apply graph embedding method to generate disease embeddings for each disease in the DCN. Then, a code attention mechanism is proposed to obtain the weight of each disease which is embedded into dense vectors based on the structure of DCN. We present a view attention mechanism to compute the attention weights of different types of features including disease embeddings, basic features, and disease indicators for generating the final representations of patients' hospitalizations. Furthermore, to fully utilize the information on the irregular time intervals between hospitalizations, a time encoding module is designed, and the time-aware LSTM is adopted to model the irregular time intervals and capture the temporal patterns of patients' hospitalizations. The experimental results show that DCNeT outperforms the state-of-the-art methods, with the area under the receiver operating characteristic curve of 0.7658, 0.8143, 0.8110, and 0.7839 on four datasets, respectively. The ablation experiments further demonstrate that each module of DCNeT, including the code attention, view attention, and time encoding module, contributes to its superior performance, with average improvements of 1.20 %, 1.65 %, and 1.13 % in accuracy, respectively. Our DCNeT could be utilized as an efficient framework for identifying high-risk groups of CVDs among patients with MDs that may benefit from screening and preventive strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
聪慧的娜完成签到 ,获得积分10
4秒前
11秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
Suzy应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
尹梓珊发布了新的文献求助10
17秒前
20秒前
Jokeypu发布了新的文献求助20
20秒前
后巷发布了新的文献求助10
30秒前
子平发布了新的文献求助50
32秒前
40秒前
爆米花应助烂漫的汲采纳,获得10
40秒前
41秒前
Dsivan发布了新的文献求助10
45秒前
Lorin完成签到 ,获得积分10
45秒前
NN应助后巷采纳,获得10
46秒前
伶俐雨双发布了新的文献求助10
46秒前
迷路冬卉发布了新的文献求助10
46秒前
顺利的科研能手完成签到 ,获得积分10
51秒前
55秒前
Dsivan完成签到,获得积分10
55秒前
英俊的铭应助小虎呀采纳,获得10
56秒前
嗯哼完成签到,获得积分0
58秒前
我桽完成签到 ,获得积分10
59秒前
科目三应助lingzhiyi采纳,获得10
1分钟前
asdfqaz完成签到,获得积分10
1分钟前
1分钟前
Evaporate完成签到,获得积分10
1分钟前
1分钟前
烂漫的汲发布了新的文献求助10
1分钟前
昔昔完成签到 ,获得积分10
1分钟前
Ava应助倦鸟余花采纳,获得10
1分钟前
11111发布了新的文献求助10
1分钟前
顾矜应助伶俐雨双采纳,获得10
1分钟前
1分钟前
伶俐雨双发布了新的文献求助10
1分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422828
求助须知:如何正确求助?哪些是违规求助? 3023211
关于积分的说明 8903805
捐赠科研通 2710590
什么是DOI,文献DOI怎么找? 1486598
科研通“疑难数据库(出版商)”最低求助积分说明 687093
邀请新用户注册赠送积分活动 682330