已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DCNeT: A disease comorbidity network-based temporal deep learning framework to predict cardiovascular risk in patients with mental disorders

共病 计算机科学 疾病 机器学习 人工智能 深度学习 数据挖掘 医学 精神科 内科学
作者
Hang Qiu,Ping Yang,Liya Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:254: 124312-124312
标识
DOI:10.1016/j.eswa.2024.124312
摘要

Patients with mental disorders (MDs) are at higher subsequent risk of developing cardiovascular diseases (CVDs) than the general population. Early identification of cardiovascular risk in patients with MDs is beneficial for timely intervention and reducing disease burden. Recently, deep learning approaches have been increasingly applied in CVDs risk prediction. However, these methods have three major issues: 1) mostly relying on multiple types of clinical data, 2) not sufficiently mining and utilizing comorbidity patterns hidden in complex correlations among various diseases, and 3) not fully leveraging the time information, including the irregular intervals. To address these issues, we propose a disease comorbidity network-based temporal deep learning framework (DCNeT) to predict the subsequent CVDs risk for patients with MDs based on routinely collected administrative health data. Firstly, to identify the comorbidity patterns of MDs, we construct a disease comorbidity network (DCN) for MDs and apply graph embedding method to generate disease embeddings for each disease in the DCN. Then, a code attention mechanism is proposed to obtain the weight of each disease which is embedded into dense vectors based on the structure of DCN. We present a view attention mechanism to compute the attention weights of different types of features including disease embeddings, basic features, and disease indicators for generating the final representations of patients' hospitalizations. Furthermore, to fully utilize the information on the irregular time intervals between hospitalizations, a time encoding module is designed, and the time-aware LSTM is adopted to model the irregular time intervals and capture the temporal patterns of patients' hospitalizations. The experimental results show that DCNeT outperforms the state-of-the-art methods, with the area under the receiver operating characteristic curve of 0.7658, 0.8143, 0.8110, and 0.7839 on four datasets, respectively. The ablation experiments further demonstrate that each module of DCNeT, including the code attention, view attention, and time encoding module, contributes to its superior performance, with average improvements of 1.20 %, 1.65 %, and 1.13 % in accuracy, respectively. Our DCNeT could be utilized as an efficient framework for identifying high-risk groups of CVDs among patients with MDs that may benefit from screening and preventive strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuuuuu完成签到,获得积分10
刚刚
科研通AI2S应助lichaoyes采纳,获得10
1秒前
脑洞疼应助zzz采纳,获得10
1秒前
2秒前
JasperChan完成签到,获得积分10
3秒前
图书馆碎碎念的葱花完成签到 ,获得积分10
6秒前
7秒前
11秒前
闪闪问玉发布了新的文献求助30
11秒前
无花果应助XyM采纳,获得10
12秒前
爱咋咋滴完成签到,获得积分10
12秒前
Ranran发布了新的文献求助20
12秒前
14秒前
14秒前
15秒前
洁净亦巧发布了新的文献求助10
17秒前
ClarkClarkson发布了新的文献求助10
19秒前
clarklkq完成签到,获得积分10
21秒前
24秒前
英俊的铭应助甜美笑柳采纳,获得10
24秒前
27秒前
斯文败类应助Sygganggang采纳,获得10
28秒前
大模型应助拨云见日采纳,获得10
29秒前
30秒前
30秒前
zhaoyu完成签到 ,获得积分10
30秒前
31秒前
32秒前
34秒前
35秒前
lby完成签到 ,获得积分10
36秒前
37秒前
blingl发布了新的文献求助10
38秒前
科研通AI2S应助盼盼采纳,获得10
38秒前
38秒前
AD完成签到,获得积分10
39秒前
39秒前
Sygganggang发布了新的文献求助10
40秒前
静静发布了新的文献求助10
40秒前
w。完成签到,获得积分10
41秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Diamonds: Properties, Synthesis and Applications 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099415
求助须知:如何正确求助?哪些是违规求助? 2751008
关于积分的说明 7610969
捐赠科研通 2402795
什么是DOI,文献DOI怎么找? 1274903
科研通“疑难数据库(出版商)”最低求助积分说明 616200
版权声明 599033