DCNeT: A disease comorbidity network-based temporal deep learning framework to predict cardiovascular risk in patients with mental disorders

共病 计算机科学 疾病 机器学习 人工智能 深度学习 数据挖掘 医学 精神科 内科学
作者
Hang Qiu,Ping Yang,Liya Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:254: 124312-124312 被引量:1
标识
DOI:10.1016/j.eswa.2024.124312
摘要

Patients with mental disorders (MDs) are at higher subsequent risk of developing cardiovascular diseases (CVDs) than the general population. Early identification of cardiovascular risk in patients with MDs is beneficial for timely intervention and reducing disease burden. Recently, deep learning approaches have been increasingly applied in CVDs risk prediction. However, these methods have three major issues: 1) mostly relying on multiple types of clinical data, 2) not sufficiently mining and utilizing comorbidity patterns hidden in complex correlations among various diseases, and 3) not fully leveraging the time information, including the irregular intervals. To address these issues, we propose a disease comorbidity network-based temporal deep learning framework (DCNeT) to predict the subsequent CVDs risk for patients with MDs based on routinely collected administrative health data. Firstly, to identify the comorbidity patterns of MDs, we construct a disease comorbidity network (DCN) for MDs and apply graph embedding method to generate disease embeddings for each disease in the DCN. Then, a code attention mechanism is proposed to obtain the weight of each disease which is embedded into dense vectors based on the structure of DCN. We present a view attention mechanism to compute the attention weights of different types of features including disease embeddings, basic features, and disease indicators for generating the final representations of patients' hospitalizations. Furthermore, to fully utilize the information on the irregular time intervals between hospitalizations, a time encoding module is designed, and the time-aware LSTM is adopted to model the irregular time intervals and capture the temporal patterns of patients' hospitalizations. The experimental results show that DCNeT outperforms the state-of-the-art methods, with the area under the receiver operating characteristic curve of 0.7658, 0.8143, 0.8110, and 0.7839 on four datasets, respectively. The ablation experiments further demonstrate that each module of DCNeT, including the code attention, view attention, and time encoding module, contributes to its superior performance, with average improvements of 1.20 %, 1.65 %, and 1.13 % in accuracy, respectively. Our DCNeT could be utilized as an efficient framework for identifying high-risk groups of CVDs among patients with MDs that may benefit from screening and preventive strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳不起来的大神完成签到 ,获得积分10
刚刚
科研乐色完成签到,获得积分10
刚刚
Drew完成签到,获得积分10
2秒前
挤爆沙丁鱼完成签到 ,获得积分10
2秒前
彭于晏应助fff采纳,获得10
2秒前
2秒前
Agernon应助yaya采纳,获得10
2秒前
四夕完成签到 ,获得积分10
3秒前
汉堡包应助执着的小蘑菇采纳,获得10
3秒前
西哈哈发布了新的文献求助10
3秒前
搜集达人应助酷炫大树采纳,获得10
4秒前
4秒前
4秒前
外向的沅完成签到,获得积分20
4秒前
bkagyin应助zy采纳,获得10
5秒前
香蕉觅云应助好了采纳,获得10
5秒前
南逸然发布了新的文献求助10
6秒前
6秒前
xiaohe完成签到,获得积分10
6秒前
6秒前
隐形曼青应助camera采纳,获得10
6秒前
狗狗完成签到 ,获得积分10
7秒前
SciGPT应助Melody采纳,获得10
7秒前
听粥发布了新的文献求助10
7秒前
小张在进步完成签到,获得积分10
8秒前
科研通AI5应助WNL采纳,获得10
8秒前
阿蒙发布了新的文献求助10
8秒前
自觉石头完成签到 ,获得积分10
9秒前
田様应助岁月轮回采纳,获得10
9秒前
hao完成签到,获得积分10
9秒前
bjbbh发布了新的文献求助10
9秒前
皓月千里完成签到,获得积分10
9秒前
夏小安完成签到,获得积分10
9秒前
10秒前
ymh完成签到,获得积分10
10秒前
starry发布了新的文献求助10
10秒前
hualidy完成签到,获得积分10
10秒前
qifa完成签到,获得积分10
10秒前
10秒前
春夏秋冬发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678