清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Gaussian filter facilitated deep learning-based architecture for accurate and efficient liver tumor segmentation for radiation therapy

分割 高斯滤波器 滤波器(信号处理) 计算机科学 人工智能 高斯分布 相似性(几何) 医学 模式识别(心理学) 放射科 计算机视觉 图像(数学) 物理 量子力学
作者
Hongyu Lin,Min Zhao,Lingling Zhu,Xi Pei,Haotian Wu,Lian Zhang,Ying Li
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fonc.2024.1423774
摘要

Purpose Addressing the challenges of unclear tumor boundaries and the confusion between cysts and tumors in liver tumor segmentation, this study aims to develop an auto-segmentation method utilizing Gaussian filter with the nnUNet architecture to effectively distinguish between tumors and cysts, enhancing the accuracy of liver tumor auto-segmentation. Methods Firstly, 130 cases of liver tumorsegmentation challenge 2017 (LiTS2017) were used for training and validating nnU-Net-based auto-segmentation model. Then, 14 cases of 3D-IRCADb dataset and 25 liver cancer cases retrospectively collected in our hospital were used for testing. The dice similarity coefficient (DSC) was used to evaluate the accuracy of auto-segmentation model by comparing with manual contours. Results The nnU-Net achieved an average DSC value of 0.86 for validation set (20 LiTS cases) and 0.82 for public testing set (14 3D-IRCADb cases). For clinical testing set, the standalone nnU-Net model achieved an average DSC value of 0.75, which increased to 0.81 after post-processing with the Gaussian filter (P<0.05), demonstrating its effectiveness in mitigating the influence of liver cysts on liver tumor segmentation. Conclusion Experiments show that Gaussian filter is beneficial to improve the accuracy of liver tumor segmentation in clinic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chenyue233完成签到,获得积分10
1秒前
17秒前
量子星尘发布了新的文献求助50
22秒前
花园里的蒜完成签到 ,获得积分0
44秒前
科研通AI6应助科研通管家采纳,获得10
48秒前
49秒前
loen完成签到,获得积分10
54秒前
多亿点完成签到 ,获得积分10
1分钟前
shuang完成签到 ,获得积分10
1分钟前
Ava应助michael_suo采纳,获得10
1分钟前
1分钟前
husi发布了新的文献求助10
1分钟前
1分钟前
husi完成签到 ,获得积分20
2分钟前
在水一方应助我爱读文献采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
michael_suo发布了新的文献求助10
2分钟前
michael_suo完成签到,获得积分10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
爱吃皮囊的大馋虫完成签到 ,获得积分10
2分钟前
大医仁心完成签到 ,获得积分10
2分钟前
馆长举报i beLIeVe求助涉嫌违规
3分钟前
迷茫的一代完成签到,获得积分10
3分钟前
馆长举报小黄瓜896求助涉嫌违规
3分钟前
馆长举报kkkkk求助涉嫌违规
3分钟前
超级兵12完成签到,获得积分10
3分钟前
程小柒完成签到 ,获得积分10
4分钟前
馆长举报Yoli求助涉嫌违规
4分钟前
馆长举报欢喜的海求助涉嫌违规
4分钟前
lei029发布了新的文献求助30
4分钟前
馆长举报耶耶耶y求助涉嫌违规
4分钟前
Wenjie_Xin完成签到,获得积分10
4分钟前
馆长举报友好慕卉求助涉嫌违规
4分钟前
馆长举报墨尘求助涉嫌违规
4分钟前
lei029完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596533
求助须知:如何正确求助?哪些是违规求助? 4008426
关于积分的说明 12409207
捐赠科研通 3687443
什么是DOI,文献DOI怎么找? 2032420
邀请新用户注册赠送积分活动 1065646
科研通“疑难数据库(出版商)”最低求助积分说明 950967