A machine learning‐based approach to predict energy layer for each field in spot‐scanning proton arc therapy for lung cancer: A feasibility study

质子疗法 肺癌 图层(电子) 弧(几何) 热点(计算机编程) 癌症 领域(数学) 能量(信号处理) 质子 人工智能 计算机科学 医学 材料科学 纳米技术 工程类 肿瘤科 物理 内科学 机械工程 数学 核物理学 统计 纯数学 操作系统
作者
Yuanyuan Ma,Yazhou Li,Penghui Xu,Hui Zhang,Xinyang Zhang,Xinguo Liu,Qiang Li
出处
期刊:Medical Physics [Wiley]
卷期号:51 (7): 4970-4981
标识
DOI:10.1002/mp.17179
摘要

Abstract Background Determining the optimal energy layer (EL) for each field, under considering both dose constraints and delivery efficiency, is crucial to promoting the development of proton arc therapy (PAT) technology. Purpose This study aimed to explore the feasibility and potential clinical benefits of utilizing machine learning (ML) technique to automatically select EL for each field in PAT plans of lung cancer. Methods Proton Bragg peak position (BPP) was employed to characterize EL. The ground truth BPPs for each field were determined using the modified ELO‐SPAT framework. Features in geometric, water‐equivalent thicknesses (WET) and beamlet were defined and extracted. By analyzing the relationship between the extracted features and ground truth, a polynomial regression model with L2‐norm regularization (Ridge regression) was constructed and trained. The performance of the regression model was reported as an error between the predictions and the ground truth. Besides, the predictions were used to make PAT plans (PAT_PRED). These plans were compared with those using the ground truth BPPs (PAT_TRUTH) and the mid‐WET of the target volumes (PAT_MID) in terms of relative biological effectiveness‐weighted dose (RWD) distributions. One hundred ten patients with lung cancer, a total of 7920 samples, were enrolled retrospectively, with 5940 cases randomly selected as the training set and the remaining 1980 cases as the testing set. Nine patients (648 samples) were collected additionally to evaluate the regression model in terms of plan quality and robustness. Results With regard to the prediction errors, the root mean squared errors and mean absolute errors between the ML‐predicted and ground truth BPPs for the testing set were 9.165 and 6.572 mm, respectively, indicating differences of approximately two to three ELs. As for plan quality, the PAT_TRUTH and PAT_PRED plans performed similarly in terms of plan robustness, target coverage and organs at risk (OARs) protection, with differences smaller than 0.5 Gy(RBE). This trend was also observed for dose conformity and uniformity. The PAT_MID plans produced the lowest robustness index and lowest doses to OARs, along with the highest heterogeneity index, indicating better protection for OARs, improved plan robustness, but compromised dose homogeneity. Additionally, for relatively small tumor sizes, the PAT_MID plan demonstrated a notably poor dose conformity index. Conclusions Within this cohort under investigation, our study demonstrated the feasibility of using ML technique to predict ELs for each field, offering a fast (within 2 s) and memory‐efficient reduced way to select ELs for PAT plan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美的冰巧完成签到 ,获得积分10
1秒前
Lucas应助秦pale采纳,获得30
2秒前
pluto应助bio_qi采纳,获得10
4秒前
abc发布了新的文献求助10
5秒前
机灵一兰完成签到 ,获得积分10
9秒前
9秒前
英俊绿海完成签到 ,获得积分10
11秒前
11秒前
留胡子的藏鸟完成签到,获得积分10
12秒前
CodeCraft应助nino采纳,获得10
12秒前
蝈蝈完成签到,获得积分10
13秒前
万幸鹿发布了新的文献求助10
13秒前
xiahou发布了新的文献求助10
14秒前
英俊的铭应助巧克小花花采纳,获得10
14秒前
DDD3完成签到,获得积分10
15秒前
16秒前
FashionBoy应助完美的映秋采纳,获得10
17秒前
灵舒完成签到,获得积分10
17秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
121231233应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得30
18秒前
Rage_Wang应助科研通管家采纳,获得20
18秒前
cdercder应助科研通管家采纳,获得10
19秒前
121231233应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
cdercder应助科研通管家采纳,获得10
19秒前
云山万重应助科研通管家采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
我是老大应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
121231233应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
云山万重应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
Su73完成签到,获得积分10
20秒前
快乐友灵完成签到,获得积分10
21秒前
tao完成签到 ,获得积分10
21秒前
李爱国应助果小镁采纳,获得10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10021089
捐赠科研通 2997457
什么是DOI,文献DOI怎么找? 1644633
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749703