计算机科学
成对比较
人工智能
机器学习
药物重新定位
药物与药物的相互作用
图形
药品
人工神经网络
药物发现
代表(政治)
化学信息学
药物靶点
理论计算机科学
生物信息学
医学
药理学
生物
政治
政治学
法学
标识
DOI:10.1371/journal.pcbi.1010812
摘要
Expressive molecular representation plays critical roles in researching drug design, while effective methods are beneficial to learning molecular representations and solving related problems in drug discovery, especially for drug-drug interactions (DDIs) prediction. Recently, a lot of work has been put forward using graph neural networks (GNNs) to forecast DDIs and learn molecular representations. However, under the current GNNs structure, the majority of approaches learn drug molecular representation from one-dimensional string or two-dimensional molecular graph structure, while the interaction information between chemical substructure remains rarely explored, and it is neglected to identify key substructures that contribute significantly to the DDIs prediction. Therefore, we proposed a dual graph neural network named DGNN-DDI to learn drug molecular features by using molecular structure and interactions. Specifically, we first designed a directed message passing neural network with substructure attention mechanism (SA-DMPNN) to adaptively extract substructures. Second, in order to improve the final features, we separated the drug-drug interactions into pairwise interactions between each drug's unique substructures. Then, the features are adopted to predict interaction probability of a DDI tuple. We evaluated DGNN-DDI on real-world dataset. Compared to state-of-the-art methods, the model improved DDIs prediction performance. We also conducted case study on existing drugs aiming to predict drug combinations that may be effective for the novel coronavirus disease 2019 (COVID-19). Moreover, the visual interpretation results proved that the DGNN-DDI was sensitive to the structure information of drugs and able to detect the key substructures for DDIs. These advantages demonstrated that the proposed method enhanced the performance and interpretation capability of DDI prediction modeling.
科研通智能强力驱动
Strongly Powered by AbleSci AI