Technological parameter optimization for walnut shell-kernel winnowing device based on neural network.

入口 迷惑 风选 风速 机械 半径 海洋工程 计算流体力学 模拟 试验台 环境科学 材料科学 气象学 工程类 计算机科学 机械工程 物理 计算机安全
作者
Hao Li,Yurong Tang,Zhang Hong,Yang Liu,Yongcheng Zhang,Hao Niu
出处
期刊:Frontiers in Bioengineering and Biotechnology [Frontiers Media SA]
卷期号:11: 1107836-1107836
标识
DOI:10.3389/fbioe.2023.1107836
摘要

The detection method for technological parameter is outdates as the traditional test cycle is long as well as the measurement error and the test amount are huge. Moreover, it is difficult to disclose the operation mechanism of devices as the operation is time-consuming and laborious. Therefore, numerical simulation was used in this study to reveal the mechanism of the walnut shell-kernel winnowing device. Moreover, the influence of baffle opening combinations, inlet wind velocity and inlet angle on cleaning rate and loss rate was predicted by the neural network model. The results demonstrated that inlet wind velocity was the primary influencing factor of cleaning rate, followed by baffle opening and inlet angle. Besides, inlet wind velocity was the primary influencing factor of loss rate, followed by inlet angle and baffle opening. The winnowing device performed best (79.91% cleaning rate, 14.37% loss rate) when the baffle opening, inlet wind velocity and inlet angle were 7.01 cm, 24.36 m/s, and 9.47°. In addition, 1/8 walnut shells and 1/4 walnut kernels were incorrectly classified due to the increase in inlet wind velocity. The inlet wind velocity was considered the major cause behind the deteriorating winnowing performance of the device. Finally, the bench test and simulation optimization results were compared. The cleaning rate and loss rate relative error during the simulation test was lower than 1.06%, which ascertained the feasibility and validity of the neural network as well as the combined numerical simulation method. This study could be useful for future research and development of shell-kernel winnowing devices for hard nuts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
达叔完成签到,获得积分10
1秒前
Zz发布了新的文献求助10
2秒前
5秒前
6秒前
9秒前
10秒前
小喻发布了新的文献求助10
11秒前
科研通AI2S应助Zz采纳,获得30
13秒前
杳鸢应助起风了采纳,获得10
14秒前
眼里有光的阿墨完成签到 ,获得积分10
19秒前
21秒前
美满傀斗关注了科研通微信公众号
21秒前
LH1993发布了新的文献求助30
22秒前
自洽发布了新的文献求助30
25秒前
小哈发布了新的文献求助10
26秒前
30秒前
32秒前
无花果应助归海含烟采纳,获得10
34秒前
Kizi2021发布了新的文献求助10
37秒前
美满傀斗发布了新的文献求助10
39秒前
我是老大应助aaa采纳,获得10
40秒前
皮皮发布了新的文献求助10
40秒前
40秒前
43秒前
45秒前
Rye发布了新的文献求助10
47秒前
杳鸢应助科研通管家采纳,获得10
48秒前
共享精神应助科研通管家采纳,获得10
48秒前
CipherSage应助科研通管家采纳,获得10
48秒前
搜集达人应助科研通管家采纳,获得10
48秒前
岛err应助科研通管家采纳,获得10
48秒前
杳鸢应助科研通管家采纳,获得10
48秒前
科目三应助科研通管家采纳,获得10
48秒前
积极的忆曼完成签到,获得积分10
49秒前
52秒前
大虫完成签到,获得积分10
54秒前
aaa发布了新的文献求助10
55秒前
丙队长完成签到,获得积分10
58秒前
1分钟前
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3376088
求助须知:如何正确求助?哪些是违规求助? 2992348
关于积分的说明 8750471
捐赠科研通 2676687
什么是DOI,文献DOI怎么找? 1466201
科研通“疑难数据库(出版商)”最低求助积分说明 678196
邀请新用户注册赠送积分活动 669801