Predicting gene mutation status via artificial intelligence technologies based on multimodal integration (MMI) to advance precision oncology

背景(考古学) 精密医学 分子诊断学 可解释性 个性化医疗 医学物理学 人工智能 放射基因组学 医学影像学 计算机科学 机器学习 医学 生物信息学 病理 无线电技术 生物 古生物学
作者
Jun Shao,Jiechao Ma,Qin Zhang,Weimin Li,Chengdi Wang
出处
期刊:Seminars in Cancer Biology [Elsevier BV]
卷期号:91: 1-15 被引量:28
标识
DOI:10.1016/j.semcancer.2023.02.006
摘要

Personalized treatment strategies for cancer frequently rely on the detection of genetic alterations which are determined by molecular biology assays. Historically, these processes typically required single-gene sequencing, next-generation sequencing, or visual inspection of histopathology slides by experienced pathologists in a clinical context. In the past decade, advances in artificial intelligence (AI) technologies have demonstrated remarkable potential in assisting physicians with accurate diagnosis of oncology image-recognition tasks. Meanwhile, AI techniques make it possible to integrate multimodal data such as radiology, histology, and genomics, providing critical guidance for the stratification of patients in the context of precision therapy. Given that the mutation detection is unaffordable and time-consuming for a considerable number of patients, predicting gene mutations based on routine clinical radiological scans or whole-slide images of tissue with AI-based methods has become a hot issue in actual clinical practice. In this review, we synthesized the general framework of multimodal integration (MMI) for molecular intelligent diagnostics beyond standard techniques. Then we summarized the emerging applications of AI in the prediction of mutational and molecular profiles of common cancers (lung, brain, breast, and other tumor types) pertaining to radiology and histology imaging. Furthermore, we concluded that there truly exist multiple challenges of AI techniques in the way of its real-world application in the medical field, including data curation, feature fusion, model interpretability, and practice regulations. Despite these challenges, we still prospect the clinical implementation of AI as a highly potential decision-support tool to aid oncologists in future cancer treatment management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小正完成签到,获得积分10
1秒前
小星星发布了新的文献求助10
3秒前
明朗完成签到 ,获得积分10
3秒前
3秒前
冷酷沛柔完成签到,获得积分10
4秒前
Dec完成签到 ,获得积分10
8秒前
星辰大海应助你好采纳,获得10
8秒前
elivsZhou发布了新的文献求助10
8秒前
奔跑的青霉素完成签到 ,获得积分10
9秒前
QOP应助科研通管家采纳,获得10
9秒前
QOP应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
zho应助科研通管家采纳,获得10
10秒前
QOP应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
16秒前
大魁完成签到,获得积分10
17秒前
尔玉完成签到 ,获得积分10
18秒前
不周山修猫完成签到,获得积分10
19秒前
漂亮的大神完成签到,获得积分10
20秒前
21秒前
23秒前
852应助夏紫儿采纳,获得10
23秒前
Renhong完成签到,获得积分10
23秒前
24秒前
完美世界应助Gtpangda采纳,获得10
25秒前
26秒前
28秒前
不周山修猫关注了科研通微信公众号
28秒前
531完成签到 ,获得积分10
28秒前
30秒前
32秒前
呆萌不正完成签到 ,获得积分10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3675356
求助须知:如何正确求助?哪些是违规求助? 3230248
关于积分的说明 9789187
捐赠科研通 2941036
什么是DOI,文献DOI怎么找? 1612327
邀请新用户注册赠送积分活动 761068
科研通“疑难数据库(出版商)”最低求助积分说明 736602