Entropy Similarity-Driven Transformation Reaction Molecular Networking Reveals Transformation Pathways and Potential Risks of Emerging Contaminants in Wastewater: The Example of Sartans

转化(遗传学) 废水 熵(时间箭头) 生化工程 污染 环境科学 计算机科学 环境工程 风险分析(工程) 工程类 化学 热力学 业务 物理 生物 生态学 生物化学 基因
作者
Yuli Qian,Yunhao Ke,Liye Wang,Nanyang Yu,Yujie He,Qingmiao Yu,Si Wei,Hongqiang Ren,Jinju Geng
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c13144
摘要

The transformation pathways and risks of emerging contaminants (ECs) in wastewater remain unclear due to the limited throughput of nontarget screening. In this study, an improved method called entropy similarity-driven transformation reaction molecular networking (ESTRMN) was developed to identify transformation products (TPs) in wastewater. In detail, entropy similarity was the most effective algorithm for identifying parent-product spectrum pairs and a threshold of 0.5 for it was determined with the guarantee of high specificity. Additionally, a TP structure database predicted according to known structures and reactions was established to assist in identification. Sartan is one of the most commonly used angiotensin II receptor blocker antihypertensive drugs. Take sartans as an example, 69 TPs of sartans with confidence levels above 3 were identified by ESTRMN, 43 of which were newly discovered. The most common reactions included hydroxylation, hydrolysis, and oxidation, resulting in the majority of sartan TPs exhibiting higher persistence, mobility, and toxicity (PMT) than their parents. The concentration of 75% sartans and TPs increased after treatment in a WWTP, and the overall risk has not been effectively mitigated. This study emphasizes the role of ESTRMN in incorporating TPs of ECs into environmental monitoring protocols and risk assessment frameworks for wastewater management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
养恩发布了新的文献求助10
1秒前
干净的人达完成签到 ,获得积分10
1秒前
1秒前
RRRCY完成签到,获得积分10
1秒前
2秒前
mdmdd发布了新的文献求助10
3秒前
好饿啊发布了新的文献求助10
3秒前
4秒前
RRRCY发布了新的文献求助10
4秒前
NexusExplorer应助狂野芷卉采纳,获得10
5秒前
JamesPei应助无私幻枫采纳,获得10
6秒前
6秒前
6秒前
希望天下0贩的0应助蓁66采纳,获得10
6秒前
Agernon应助紫熊采纳,获得10
6秒前
所所应助江月年采纳,获得10
6秒前
颜倾完成签到 ,获得积分10
7秒前
打打应助火星上冬日采纳,获得10
7秒前
wuxunxun2015发布了新的文献求助30
8秒前
领导范儿应助www采纳,获得50
8秒前
8秒前
momi完成签到 ,获得积分10
9秒前
012发布了新的文献求助10
9秒前
思源应助666采纳,获得10
10秒前
10秒前
共享精神应助meng采纳,获得10
11秒前
Owen应助rodney2023采纳,获得10
11秒前
寻雪完成签到,获得积分10
12秒前
14秒前
14秒前
dingchiou发布了新的文献求助10
14秒前
暖栀发布了新的文献求助10
15秒前
15秒前
zulinxy发布了新的文献求助10
15秒前
hha发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
隐形曼青应助啦啦啦123采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543314
求助须知:如何正确求助?哪些是违规求助? 3120695
关于积分的说明 9343843
捐赠科研通 2818781
什么是DOI,文献DOI怎么找? 1549765
邀请新用户注册赠送积分活动 722233
科研通“疑难数据库(出版商)”最低求助积分说明 713090