Metabolic health and cardiometabolic risk clusters: implications for prediction, prevention, and treatment

医学 人体测量学 代谢综合征 肥胖 风险评估 老年学 人口 环境卫生 星团(航天器) 危险分层 内科学 计算机安全 计算机科学 程序设计语言
作者
Norbert Stefan,Matthias B. Schulze
出处
期刊:The Lancet Diabetes & Endocrinology [Elsevier]
卷期号:11 (6): 426-440 被引量:156
标识
DOI:10.1016/s2213-8587(23)00086-4
摘要

Among 20 leading global risk factors for years of life lost in 2040, reference forecasts point to three metabolic risks—high blood pressure, high BMI, and high fasting plasma glucose—as being the top risk variables. Building upon these and other risk factors, the concept of metabolic health is attracting much attention in the scientific community. It focuses on the aggregation of important risk factors, which allows the identification of subphenotypes, such as people with metabolically unhealthy normal weight or metabolically healthy obesity, who strongly differ in their risk of cardiometabolic diseases. Since 2018, studies that used anthropometrics, metabolic characteristics, and genetics in the setting of cluster analyses proposed novel metabolic subphenotypes among patients at high risk (eg, those with diabetes). The crucial point now is whether these subphenotyping strategies are superior to established cardiometabolic risk stratification methods regarding the prediction, prevention, and treatment of cardiometabolic diseases. In this Review, we carefully address this point and conclude, firstly, regarding cardiometabolic risk stratification, in the general population both the concept of metabolic health and the cluster approaches are not superior to established risk prediction models. However, both subphenotyping approaches might be informative to improve the prediction of cardiometabolic risk in subgroups of individuals, such as those in different BMI categories or people with diabetes. Secondly, the applicability of the concepts by treating physicians and communication of the cardiometabolic risk with patients is easiest using the concept of metabolic health. Finally, the approaches to identify cardiometabolic risk clusters in particular have provided some evidence that they could be used to allocate individuals to specific pathophysiological risk groups, but whether this allocation is helpful for prevention and treatment still needs to be determined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
石头饼完成签到,获得积分10
1秒前
无花果应助zta采纳,获得30
1秒前
1秒前
1秒前
cavi发布了新的文献求助10
1秒前
1秒前
orange9发布了新的文献求助10
3秒前
nifty完成签到,获得积分10
3秒前
3秒前
充电宝应助就爱从黑巧采纳,获得30
4秒前
步步发布了新的文献求助20
4秒前
Young应助毛毛采纳,获得10
4秒前
科研通AI6应助毛毛采纳,获得10
4秒前
5秒前
5秒前
Young应助Dprisk采纳,获得10
5秒前
Folium完成签到,获得积分10
5秒前
小二郎应助gao采纳,获得10
6秒前
Grinde发布了新的文献求助10
6秒前
俏皮晓曼发布了新的文献求助10
6秒前
隐形曼青应助姿姿采纳,获得10
6秒前
July发布了新的文献求助10
6秒前
nini应助球球的铲屎官采纳,获得20
7秒前
7秒前
归尘发布了新的文献求助10
7秒前
7秒前
8秒前
pretzel完成签到,获得积分10
8秒前
大个应助微笑翠桃采纳,获得10
8秒前
阔达远山完成签到,获得积分10
9秒前
li关注了科研通微信公众号
10秒前
lulu发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
旺旺完成签到,获得积分10
11秒前
科研通AI6应助啦啦王采纳,获得10
11秒前
wangcc完成签到 ,获得积分10
11秒前
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615105
求助须知:如何正确求助?哪些是违规求助? 4700011
关于积分的说明 14906187
捐赠科研通 4741141
什么是DOI,文献DOI怎么找? 2547938
邀请新用户注册赠送积分活动 1511682
关于科研通互助平台的介绍 1473736