Metabolic health and cardiometabolic risk clusters: implications for prediction, prevention, and treatment

医学 人体测量学 代谢综合征 肥胖 风险评估 老年学 人口 环境卫生 星团(航天器) 危险分层 内科学 计算机安全 计算机科学 程序设计语言
作者
Norbert Stefan,Matthias B. Schulze
出处
期刊:The Lancet Diabetes & Endocrinology [Elsevier BV]
卷期号:11 (6): 426-440 被引量:95
标识
DOI:10.1016/s2213-8587(23)00086-4
摘要

Among 20 leading global risk factors for years of life lost in 2040, reference forecasts point to three metabolic risks—high blood pressure, high BMI, and high fasting plasma glucose—as being the top risk variables. Building upon these and other risk factors, the concept of metabolic health is attracting much attention in the scientific community. It focuses on the aggregation of important risk factors, which allows the identification of subphenotypes, such as people with metabolically unhealthy normal weight or metabolically healthy obesity, who strongly differ in their risk of cardiometabolic diseases. Since 2018, studies that used anthropometrics, metabolic characteristics, and genetics in the setting of cluster analyses proposed novel metabolic subphenotypes among patients at high risk (eg, those with diabetes). The crucial point now is whether these subphenotyping strategies are superior to established cardiometabolic risk stratification methods regarding the prediction, prevention, and treatment of cardiometabolic diseases. In this Review, we carefully address this point and conclude, firstly, regarding cardiometabolic risk stratification, in the general population both the concept of metabolic health and the cluster approaches are not superior to established risk prediction models. However, both subphenotyping approaches might be informative to improve the prediction of cardiometabolic risk in subgroups of individuals, such as those in different BMI categories or people with diabetes. Secondly, the applicability of the concepts by treating physicians and communication of the cardiometabolic risk with patients is easiest using the concept of metabolic health. Finally, the approaches to identify cardiometabolic risk clusters in particular have provided some evidence that they could be used to allocate individuals to specific pathophysiological risk groups, but whether this allocation is helpful for prevention and treatment still needs to be determined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小研大究完成签到,获得积分10
刚刚
1秒前
ningwu发布了新的文献求助40
1秒前
1秒前
cmd完成签到,获得积分10
1秒前
3秒前
科研通AI5应助美丽的滕滕采纳,获得10
3秒前
李健应助scq采纳,获得10
3秒前
海德堡发布了新的文献求助10
3秒前
4秒前
4秒前
风不鸣枝发布了新的文献求助30
5秒前
爱撒娇的大白菜真实的钥匙完成签到 ,获得积分10
5秒前
完美世界应助耶啵采纳,获得30
5秒前
redisni发布了新的文献求助10
5秒前
脑洞疼应助石油程序员采纳,获得10
5秒前
6秒前
鲜于达完成签到,获得积分10
6秒前
222发布了新的文献求助30
6秒前
6秒前
黄院士完成签到 ,获得积分10
6秒前
今天只做一件事应助qwerty采纳,获得50
7秒前
荒年完成签到,获得积分10
7秒前
7秒前
CipherSage应助霸气秀采纳,获得10
8秒前
8秒前
秦艽发布了新的文献求助10
8秒前
阿霍发布了新的文献求助10
8秒前
18275412695发布了新的文献求助10
8秒前
8秒前
9秒前
帅气灯泡完成签到,获得积分10
9秒前
田様应助乔心采纳,获得10
9秒前
暴风之怒要打雷完成签到,获得积分20
9秒前
小二郎应助优秀的灵安采纳,获得10
10秒前
10秒前
退学炒股给退学炒股的求助进行了留言
10秒前
我真的不是robot完成签到,获得积分10
10秒前
李健的小迷弟应助cctv18采纳,获得10
10秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755983
求助须知:如何正确求助?哪些是违规求助? 3299253
关于积分的说明 10109367
捐赠科研通 3013816
什么是DOI,文献DOI怎么找? 1655273
邀请新用户注册赠送积分活动 789692
科研通“疑难数据库(出版商)”最低求助积分说明 753361