Metabolic health and cardiometabolic risk clusters: implications for prediction, prevention, and treatment

医学 人体测量学 代谢综合征 肥胖 风险评估 老年学 人口 环境卫生 星团(航天器) 危险分层 内科学 计算机安全 计算机科学 程序设计语言
作者
Norbert Stefan,Matthias B. Schulze
出处
期刊:The Lancet Diabetes & Endocrinology [Elsevier]
卷期号:11 (6): 426-440 被引量:153
标识
DOI:10.1016/s2213-8587(23)00086-4
摘要

Among 20 leading global risk factors for years of life lost in 2040, reference forecasts point to three metabolic risks—high blood pressure, high BMI, and high fasting plasma glucose—as being the top risk variables. Building upon these and other risk factors, the concept of metabolic health is attracting much attention in the scientific community. It focuses on the aggregation of important risk factors, which allows the identification of subphenotypes, such as people with metabolically unhealthy normal weight or metabolically healthy obesity, who strongly differ in their risk of cardiometabolic diseases. Since 2018, studies that used anthropometrics, metabolic characteristics, and genetics in the setting of cluster analyses proposed novel metabolic subphenotypes among patients at high risk (eg, those with diabetes). The crucial point now is whether these subphenotyping strategies are superior to established cardiometabolic risk stratification methods regarding the prediction, prevention, and treatment of cardiometabolic diseases. In this Review, we carefully address this point and conclude, firstly, regarding cardiometabolic risk stratification, in the general population both the concept of metabolic health and the cluster approaches are not superior to established risk prediction models. However, both subphenotyping approaches might be informative to improve the prediction of cardiometabolic risk in subgroups of individuals, such as those in different BMI categories or people with diabetes. Secondly, the applicability of the concepts by treating physicians and communication of the cardiometabolic risk with patients is easiest using the concept of metabolic health. Finally, the approaches to identify cardiometabolic risk clusters in particular have provided some evidence that they could be used to allocate individuals to specific pathophysiological risk groups, but whether this allocation is helpful for prevention and treatment still needs to be determined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张坤发布了新的文献求助10
1秒前
Ava应助旧时光采纳,获得10
1秒前
松花蛋发布了新的文献求助10
1秒前
张大大发布了新的文献求助10
2秒前
2秒前
4秒前
爱听歌的悒完成签到,获得积分10
5秒前
jtzdy发布了新的文献求助10
5秒前
研友_LJGXgn完成签到,获得积分10
6秒前
7秒前
RuiLi完成签到,获得积分10
7秒前
zz完成签到,获得积分10
8秒前
8秒前
8秒前
Pan完成签到,获得积分10
8秒前
钟露完成签到 ,获得积分10
9秒前
秀丽小猫咪举报YWRJMK求助涉嫌违规
10秒前
浮游应助RICK采纳,获得10
10秒前
无花果应助111采纳,获得10
10秒前
小白发布了新的文献求助10
11秒前
洛冬完成签到,获得积分10
11秒前
完美的紫发布了新的文献求助10
11秒前
11秒前
honey发布了新的文献求助10
12秒前
南充市第一中学完成签到,获得积分10
12秒前
AliceCute发布了新的文献求助10
12秒前
宗语雪完成签到,获得积分10
12秒前
李键刚完成签到,获得积分10
13秒前
13秒前
tyughi完成签到,获得积分10
13秒前
luckyblue完成签到,获得积分10
14秒前
小清发布了新的文献求助30
14秒前
韩程果完成签到 ,获得积分10
14秒前
六六六大瓶完成签到,获得积分10
14秒前
Orange应助hhhhhhh采纳,获得10
14秒前
15秒前
旧时光发布了新的文献求助10
15秒前
xxbear77发布了新的文献求助10
17秒前
www发布了新的文献求助10
18秒前
cyn发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540459
求助须知:如何正确求助?哪些是违规求助? 4626994
关于积分的说明 14601951
捐赠科研通 4568032
什么是DOI,文献DOI怎么找? 2504328
邀请新用户注册赠送积分活动 1481989
关于科研通互助平台的介绍 1453623