Benders Adaptive-Cuts Method for Two-Stage Stochastic Programs

本德分解 数学优化 随机规划 CVAR公司 实施 趋同(经济学) 计算机科学 数学 预期短缺 管理 经济 程序设计语言 经济增长 风险管理
作者
Cristian Ramírez-Pico,Ivana Ljubić,Eduardo Moreno
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (5): 1252-1275 被引量:2
标识
DOI:10.1287/trsc.2022.0073
摘要

Benders decomposition is one of the most applied methods to solve two-stage stochastic problems (TSSP) with a large number of scenarios. The main idea behind the Benders decomposition is to solve a large problem by replacing the values of the second-stage subproblems with individual variables and progressively forcing those variables to reach the optimal value of the subproblems, dynamically inserting additional valid constraints, known as Benders cuts. Most traditional implementations add a cut for each scenario (multicut) or a single cut that includes all scenarios. In this paper, we present a novel Benders adaptive-cuts method, where the Benders cuts are aggregated according to a partition of the scenarios, which is dynamically refined using the linear program-dual information of the subproblems. This scenario aggregation/disaggregation is based on the Generalized Adaptive Partitioning Method (GAPM), which has been successfully applied to TSSPs. We formalize this hybridization of Benders decomposition and the GAPM by providing sufficient conditions under which an optimal solution of the deterministic equivalent can be obtained in a finite number of iterations. Our new method can be interpreted as a compromise between the Benders single-cuts and multicuts methods, drawing on the advantages of both sides, by rendering the initial iterations faster (as for the single-cuts Benders) and ensuring the overall faster convergence (as for the multicuts Benders). Computational experiments on three TSSPs [the Stochastic Electricity Planning, Stochastic Multi-Commodity Flow, and conditional value-at-risk (CVaR) Facility Location] validate these statements, showing that the new method outperforms the other implementations of Benders methods, as well as other standard methods for solving TSSPs, in particular when the number of scenarios is very large. Moreover, our study demonstrates that the method is not only effective for the risk-neutral decision makers, but also that it can be used in combination with the risk-averse CVaR objective. Funding: Financial support from Agencia Nacional de Investigación y Desarrollo - Chile [FONDECYT 1200809] and STIC-Amsud [STIC19007] is gratefully acknowledged.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Brennan完成签到,获得积分10
刚刚
1秒前
1秒前
笨笨善若发布了新的文献求助10
2秒前
2秒前
3秒前
樘樘完成签到,获得积分10
3秒前
一个有点长的序完成签到 ,获得积分10
4秒前
孙淳完成签到,获得积分10
5秒前
5秒前
YYJ25发布了新的文献求助10
6秒前
Jzhang应助tmpstlml采纳,获得10
7秒前
微笑的南露完成签到 ,获得积分10
7秒前
豌豆关注了科研通微信公众号
7秒前
10秒前
笨笨善若完成签到,获得积分10
12秒前
hs完成签到,获得积分20
12秒前
ZHANGMANLI0422完成签到,获得积分10
12秒前
susu关注了科研通微信公众号
14秒前
DYuH23完成签到,获得积分10
15秒前
16秒前
爱静静应助DHL采纳,获得10
16秒前
16秒前
sunny661104完成签到 ,获得积分10
17秒前
简单完成签到 ,获得积分10
17秒前
尘林发布了新的文献求助10
17秒前
Z-先森完成签到,获得积分0
18秒前
苏源智发布了新的文献求助10
18秒前
伯赏诗霜完成签到,获得积分10
19秒前
NN应助LIn采纳,获得10
20秒前
20秒前
超级无敌学术苦瓜完成签到,获得积分10
20秒前
20秒前
Zn应助111采纳,获得10
21秒前
舒适静丹完成签到,获得积分10
22秒前
丽颖发布了新的文献求助10
23秒前
cui完成签到,获得积分10
23秒前
lixm完成签到,获得积分10
23秒前
yyyyy语言完成签到,获得积分10
23秒前
栗子完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849