Benders Adaptive-Cuts Method for Two-Stage Stochastic Programs

本德分解 数学优化 随机规划 CVAR公司 实施 趋同(经济学) 计算机科学 数学 预期短缺 风险管理 经济增长 经济 管理 程序设计语言
作者
Cristian Ramírez-Pico,Ivana Ljubić,Eduardo Moreno
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (5): 1252-1275 被引量:2
标识
DOI:10.1287/trsc.2022.0073
摘要

Benders decomposition is one of the most applied methods to solve two-stage stochastic problems (TSSP) with a large number of scenarios. The main idea behind the Benders decomposition is to solve a large problem by replacing the values of the second-stage subproblems with individual variables and progressively forcing those variables to reach the optimal value of the subproblems, dynamically inserting additional valid constraints, known as Benders cuts. Most traditional implementations add a cut for each scenario (multicut) or a single cut that includes all scenarios. In this paper, we present a novel Benders adaptive-cuts method, where the Benders cuts are aggregated according to a partition of the scenarios, which is dynamically refined using the linear program-dual information of the subproblems. This scenario aggregation/disaggregation is based on the Generalized Adaptive Partitioning Method (GAPM), which has been successfully applied to TSSPs. We formalize this hybridization of Benders decomposition and the GAPM by providing sufficient conditions under which an optimal solution of the deterministic equivalent can be obtained in a finite number of iterations. Our new method can be interpreted as a compromise between the Benders single-cuts and multicuts methods, drawing on the advantages of both sides, by rendering the initial iterations faster (as for the single-cuts Benders) and ensuring the overall faster convergence (as for the multicuts Benders). Computational experiments on three TSSPs [the Stochastic Electricity Planning, Stochastic Multi-Commodity Flow, and conditional value-at-risk (CVaR) Facility Location] validate these statements, showing that the new method outperforms the other implementations of Benders methods, as well as other standard methods for solving TSSPs, in particular when the number of scenarios is very large. Moreover, our study demonstrates that the method is not only effective for the risk-neutral decision makers, but also that it can be used in combination with the risk-averse CVaR objective. Funding: Financial support from Agencia Nacional de Investigación y Desarrollo - Chile [FONDECYT 1200809] and STIC-Amsud [STIC19007] is gratefully acknowledged.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单薄树叶应助科研通管家采纳,获得20
刚刚
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
100完成签到,获得积分20
2秒前
YUN发布了新的文献求助10
2秒前
欢喜的小海豚完成签到,获得积分10
2秒前
2秒前
二十八完成签到 ,获得积分10
2秒前
zaohesu完成签到,获得积分10
3秒前
3秒前
赘婿应助等等采纳,获得10
3秒前
4秒前
4秒前
aileen9190完成签到,获得积分10
4秒前
朴实的香露完成签到,获得积分10
5秒前
嘻嘻嘻发布了新的文献求助10
5秒前
BadBoy完成签到,获得积分10
5秒前
斯文败类应助茵似采纳,获得10
6秒前
哥屋恩发布了新的文献求助10
7秒前
鲤鱼鸽子发布了新的文献求助10
7秒前
自信的尔丝完成签到,获得积分10
7秒前
8秒前
西瓜发布了新的文献求助10
10秒前
摆烂昊发布了新的文献求助10
10秒前
漂亮幻莲发布了新的文献求助10
11秒前
slp完成签到 ,获得积分10
11秒前
mescal完成签到,获得积分10
11秒前
12秒前
以乐其志发布了新的文献求助10
12秒前
dandelion完成签到 ,获得积分10
13秒前
mescal发布了新的文献求助10
13秒前
小蘑菇应助清爽灰狼采纳,获得10
14秒前
14秒前
痴情的从雪完成签到,获得积分10
15秒前
15秒前
15秒前
鄙视注册完成签到,获得积分10
15秒前
15秒前
16秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159344
求助须知:如何正确求助?哪些是违规求助? 2810413
关于积分的说明 7887812
捐赠科研通 2469306
什么是DOI,文献DOI怎么找? 1314746
科研通“疑难数据库(出版商)”最低求助积分说明 630710
版权声明 602012