Molecular-based artificial neural network for predicting the electrical conductivity of deep eutectic solvents

共晶体系 人工神经网络 人工智能 电阻率和电导率 电导率 材料科学 计算机科学 生物系统 化学 工程类 物理化学 电气工程 冶金 生物 合金
作者
Abir Boublia,Tarek Lemaoui,Farah Abu Hatab,Ahmad S. Darwish,Fawzi Banat,Yacine Benguerba,Inas M. AlNashef
出处
期刊:Journal of Molecular Liquids [Elsevier BV]
卷期号:366: 120225-120225 被引量:19
标识
DOI:10.1016/j.molliq.2022.120225
摘要

• An artificial neural network (ANN) is proposed for predicting the electrical conductivity of DESs. • Data includes all measurements reported in the literature up to the date of writing. • The coefficient of determination ( R 2 ) was determined to be 0.993 in training and 0.984 in testing. • The ANN is considered reliable and could be utilized in the absence of experimental data. Due to their unique features, deep eutectic solvents (DESs) are well-known as promising and environmentally friendly solvents. Their use in various processes has recently become the focus of several research groups. However, designing DESs with optimal properties for a particular application requires many resources and is time-consuming. Therefore, it is crucial to develop predictive models to estimate the properties of DESs, which will save resources and time. Electrical conductivity is one of the most critical factors for the design, control and optimization of electrochemical processes. In this work, a model capable of estimating the electrical conductivity of DESs is presented. The model combines the Quantitative Structure-Property Relationships (QSPR) approach with artificial neural networks (ANNs) and COSMO-RS-based molecular parameters known as S σ profiles . . The QSPR-ANN training set consists of 2,266 data points from 191 DES mixtures with 334 compositions prepared from 8 anions, 26 cations, and 73 hydrogen bond donors (HBDs) measured at various temperatures ranging from 218 to 403 K. The coefficient of determination ( R 2 ) for the QSPR-ANN developed was 0.993 in training and 0.984 in testing. In conclusion, the proposed approach can reliably estimate the electrical conductivity of DESs and can be used to determine appropriate DESs with the desired electrical conductivity for various electrochemical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dingding发布了新的文献求助30
1秒前
WJ发布了新的文献求助10
1秒前
1秒前
1秒前
刘爽应助Xe采纳,获得10
2秒前
xyx发布了新的文献求助20
2秒前
3秒前
核桃应助jie采纳,获得10
3秒前
3秒前
3秒前
Fine完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
XudongHou发布了新的文献求助10
4秒前
4秒前
777777777完成签到,获得积分10
6秒前
杜不腾完成签到,获得积分10
6秒前
7秒前
xy发布了新的文献求助10
7秒前
zzzzzz发布了新的文献求助10
8秒前
wade完成签到,获得积分10
8秒前
冷酷的玉米完成签到,获得积分20
8秒前
小小发布了新的文献求助10
8秒前
木直发布了新的文献求助30
9秒前
9秒前
学术laji发布了新的文献求助10
9秒前
FashionBoy应助土豪的冰蓝采纳,获得10
10秒前
11秒前
11秒前
葡萄完成签到,获得积分10
12秒前
yar应助孤独书南采纳,获得20
12秒前
13秒前
wanci应助猪猪hero采纳,获得10
13秒前
冷静宛海完成签到,获得积分10
13秒前
哈哈哈完成签到 ,获得积分10
13秒前
胡须发布了新的文献求助30
13秒前
怕黑盼雁完成签到,获得积分20
14秒前
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954873
求助须知:如何正确求助?哪些是违规求助? 3500946
关于积分的说明 11101499
捐赠科研通 3231364
什么是DOI,文献DOI怎么找? 1786402
邀请新用户注册赠送积分活动 870037
科研通“疑难数据库(出版商)”最低求助积分说明 801771