Molecular-based artificial neural network for predicting the electrical conductivity of deep eutectic solvents

共晶体系 人工神经网络 人工智能 电阻率和电导率 电导率 材料科学 计算机科学 生物系统 化学 工程类 物理化学 电气工程 冶金 合金 生物
作者
Abir Boublia,Tarek Lemaoui,Farah Abu Hatab,Ahmad S. Darwish,Fawzi Banat,Yacine Benguerba,Inas M. AlNashef
出处
期刊:Journal of Molecular Liquids [Elsevier BV]
卷期号:366: 120225-120225 被引量:70
标识
DOI:10.1016/j.molliq.2022.120225
摘要

• An artificial neural network (ANN) is proposed for predicting the electrical conductivity of DESs. • Data includes all measurements reported in the literature up to the date of writing. • The coefficient of determination ( R 2 ) was determined to be 0.993 in training and 0.984 in testing. • The ANN is considered reliable and could be utilized in the absence of experimental data. Due to their unique features, deep eutectic solvents (DESs) are well-known as promising and environmentally friendly solvents. Their use in various processes has recently become the focus of several research groups. However, designing DESs with optimal properties for a particular application requires many resources and is time-consuming. Therefore, it is crucial to develop predictive models to estimate the properties of DESs, which will save resources and time. Electrical conductivity is one of the most critical factors for the design, control and optimization of electrochemical processes. In this work, a model capable of estimating the electrical conductivity of DESs is presented. The model combines the Quantitative Structure-Property Relationships (QSPR) approach with artificial neural networks (ANNs) and COSMO-RS-based molecular parameters known as S σ profiles . . The QSPR-ANN training set consists of 2,266 data points from 191 DES mixtures with 334 compositions prepared from 8 anions, 26 cations, and 73 hydrogen bond donors (HBDs) measured at various temperatures ranging from 218 to 403 K. The coefficient of determination ( R 2 ) for the QSPR-ANN developed was 0.993 in training and 0.984 in testing. In conclusion, the proposed approach can reliably estimate the electrical conductivity of DESs and can be used to determine appropriate DESs with the desired electrical conductivity for various electrochemical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
哈哈发布了新的文献求助10
刚刚
爆爆完成签到,获得积分10
刚刚
11111完成签到,获得积分20
刚刚
Jasper应助冷静白亦采纳,获得10
1秒前
拉普拉斯妖完成签到,获得积分10
2秒前
谢志超发布了新的文献求助10
3秒前
13981592626发布了新的文献求助10
4秒前
13981592626发布了新的文献求助10
4秒前
13981592626发布了新的文献求助10
4秒前
13981592626发布了新的文献求助10
4秒前
零零发布了新的文献求助10
5秒前
mirror关注了科研通微信公众号
7秒前
8秒前
调皮小蘑菇完成签到,获得积分10
11秒前
谢志超完成签到,获得积分10
11秒前
谢鸿宇完成签到,获得积分10
13秒前
13秒前
玺白白发布了新的文献求助10
13秒前
科研通AI5应助soyorin采纳,获得10
13秒前
14秒前
14秒前
17秒前
yy应助爱听歌的书双采纳,获得10
17秒前
科研通AI5应助迅速的鸽子采纳,获得10
17秒前
COCONUT完成签到,获得积分10
18秒前
DS发布了新的文献求助10
18秒前
隐形的谷槐完成签到 ,获得积分10
19秒前
llll发布了新的文献求助10
20秒前
lwt完成签到,获得积分20
21秒前
义气千风完成签到,获得积分10
21秒前
壮观安寒完成签到 ,获得积分10
22秒前
充电宝应助HP采纳,获得20
22秒前
所所应助执着的导师采纳,获得10
23秒前
25秒前
25秒前
胡萝卜叶子完成签到,获得积分10
28秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133459
求助须知:如何正确求助?哪些是违规求助? 4334575
关于积分的说明 13504156
捐赠科研通 4171584
什么是DOI,文献DOI怎么找? 2287247
邀请新用户注册赠送积分活动 1288151
关于科研通互助平台的介绍 1228995