Molecular-based artificial neural network for predicting the electrical conductivity of deep eutectic solvents

共晶体系 人工神经网络 人工智能 电阻率和电导率 电导率 材料科学 计算机科学 生物系统 化学 工程类 物理化学 电气工程 冶金 生物 合金
作者
Abir Boublia,Tarek Lemaoui,Farah Abu Hatab,Ahmad S. Darwish,Fawzi Banat,Yacine Benguerba,Inas M. AlNashef
出处
期刊:Journal of Molecular Liquids [Elsevier]
卷期号:366: 120225-120225 被引量:70
标识
DOI:10.1016/j.molliq.2022.120225
摘要

• An artificial neural network (ANN) is proposed for predicting the electrical conductivity of DESs. • Data includes all measurements reported in the literature up to the date of writing. • The coefficient of determination ( R 2 ) was determined to be 0.993 in training and 0.984 in testing. • The ANN is considered reliable and could be utilized in the absence of experimental data. Due to their unique features, deep eutectic solvents (DESs) are well-known as promising and environmentally friendly solvents. Their use in various processes has recently become the focus of several research groups. However, designing DESs with optimal properties for a particular application requires many resources and is time-consuming. Therefore, it is crucial to develop predictive models to estimate the properties of DESs, which will save resources and time. Electrical conductivity is one of the most critical factors for the design, control and optimization of electrochemical processes. In this work, a model capable of estimating the electrical conductivity of DESs is presented. The model combines the Quantitative Structure-Property Relationships (QSPR) approach with artificial neural networks (ANNs) and COSMO-RS-based molecular parameters known as S σ profiles . . The QSPR-ANN training set consists of 2,266 data points from 191 DES mixtures with 334 compositions prepared from 8 anions, 26 cations, and 73 hydrogen bond donors (HBDs) measured at various temperatures ranging from 218 to 403 K. The coefficient of determination ( R 2 ) for the QSPR-ANN developed was 0.993 in training and 0.984 in testing. In conclusion, the proposed approach can reliably estimate the electrical conductivity of DESs and can be used to determine appropriate DESs with the desired electrical conductivity for various electrochemical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助PanLi采纳,获得30
刚刚
1秒前
南方有故人完成签到,获得积分10
1秒前
1秒前
RocaY发布了新的文献求助10
1秒前
长情的千愁完成签到,获得积分10
3秒前
Jason完成签到 ,获得积分10
5秒前
石石刘完成签到 ,获得积分10
5秒前
6秒前
科研通AI6.1应助luo采纳,获得10
7秒前
风中远山完成签到,获得积分10
7秒前
若杉完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
A羊_完成签到,获得积分20
8秒前
Pilule完成签到 ,获得积分10
8秒前
FashionBoy应助Isaiah采纳,获得10
8秒前
科研通AI6.1应助柔弱雅彤采纳,获得10
8秒前
9秒前
9秒前
9秒前
烟花应助阿紫采纳,获得10
10秒前
10秒前
佳丽完成签到,获得积分10
10秒前
mltyyds完成签到,获得积分10
11秒前
12秒前
12秒前
勤恳易谙发布了新的文献求助10
12秒前
高兴的平露完成签到 ,获得积分10
12秒前
hankpotter完成签到,获得积分10
12秒前
cloudz完成签到,获得积分10
13秒前
香蕉觅云应助LYB吕采纳,获得10
13秒前
ql关闭了ql文献求助
13秒前
14秒前
Phoo发布了新的文献求助10
14秒前
14秒前
芬栀发布了新的文献求助10
14秒前
15秒前
15秒前
old赵应助一线忧思采纳,获得20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106