Molecular-based artificial neural network for predicting the electrical conductivity of deep eutectic solvents

共晶体系 人工神经网络 人工智能 电阻率和电导率 电导率 材料科学 计算机科学 生物系统 化学 工程类 物理化学 电气工程 冶金 生物 合金
作者
Abir Boublia,Tarek Lemaoui,Farah Abu Hatab,Ahmad S. Darwish,Fawzi Banat,Yacine Benguerba,Inas M. AlNashef
出处
期刊:Journal of Molecular Liquids [Elsevier]
卷期号:366: 120225-120225 被引量:19
标识
DOI:10.1016/j.molliq.2022.120225
摘要

• An artificial neural network (ANN) is proposed for predicting the electrical conductivity of DESs. • Data includes all measurements reported in the literature up to the date of writing. • The coefficient of determination ( R 2 ) was determined to be 0.993 in training and 0.984 in testing. • The ANN is considered reliable and could be utilized in the absence of experimental data. Due to their unique features, deep eutectic solvents (DESs) are well-known as promising and environmentally friendly solvents. Their use in various processes has recently become the focus of several research groups. However, designing DESs with optimal properties for a particular application requires many resources and is time-consuming. Therefore, it is crucial to develop predictive models to estimate the properties of DESs, which will save resources and time. Electrical conductivity is one of the most critical factors for the design, control and optimization of electrochemical processes. In this work, a model capable of estimating the electrical conductivity of DESs is presented. The model combines the Quantitative Structure-Property Relationships (QSPR) approach with artificial neural networks (ANNs) and COSMO-RS-based molecular parameters known as S σ profiles . . The QSPR-ANN training set consists of 2,266 data points from 191 DES mixtures with 334 compositions prepared from 8 anions, 26 cations, and 73 hydrogen bond donors (HBDs) measured at various temperatures ranging from 218 to 403 K. The coefficient of determination ( R 2 ) for the QSPR-ANN developed was 0.993 in training and 0.984 in testing. In conclusion, the proposed approach can reliably estimate the electrical conductivity of DESs and can be used to determine appropriate DESs with the desired electrical conductivity for various electrochemical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zou发布了新的文献求助10
1秒前
bkagyin应助11采纳,获得10
2秒前
3秒前
江江江江发布了新的文献求助10
3秒前
科研通AI2S应助欢呼雁采纳,获得10
3秒前
4秒前
追寻的山晴应助felix采纳,获得10
4秒前
追寻的山晴应助felix采纳,获得10
4秒前
追寻的山晴应助felix采纳,获得10
4秒前
追寻的山晴应助felix采纳,获得10
4秒前
4秒前
Akim应助蘑菇腿采纳,获得10
4秒前
hb发布了新的文献求助20
4秒前
桐桐应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得30
6秒前
英姑应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
云瑾应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得30
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
7秒前
浅色西完成签到,获得积分10
8秒前
Lab夜归人发布了新的文献求助10
10秒前
小呆陶陶完成签到 ,获得积分10
10秒前
开心的眼睛完成签到,获得积分10
11秒前
12秒前
moncypool发布了新的文献求助30
12秒前
12秒前
14秒前
李健应助FOODHUA采纳,获得10
14秒前
呃呃发布了新的文献求助10
15秒前
111111完成签到 ,获得积分20
15秒前
LLH发布了新的文献求助10
16秒前
nil应助hins采纳,获得10
17秒前
day发布了新的文献求助10
17秒前
FashionBoy应助范小小采纳,获得10
18秒前
19秒前
nina发布了新的文献求助10
20秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164013
求助须知:如何正确求助?哪些是违规求助? 2814801
关于积分的说明 7906532
捐赠科研通 2474357
什么是DOI,文献DOI怎么找? 1317472
科研通“疑难数据库(出版商)”最低求助积分说明 631769
版权声明 602198