Molecular-based artificial neural network for predicting the electrical conductivity of deep eutectic solvents

共晶体系 人工神经网络 人工智能 电阻率和电导率 电导率 材料科学 计算机科学 生物系统 化学 工程类 物理化学 电气工程 冶金 生物 合金
作者
Abir Boublia,Tarek Lemaoui,Farah Abu Hatab,Ahmad S. Darwish,Fawzi Banat,Yacine Benguerba,Inas M. AlNashef
出处
期刊:Journal of Molecular Liquids [Elsevier]
卷期号:366: 120225-120225 被引量:70
标识
DOI:10.1016/j.molliq.2022.120225
摘要

• An artificial neural network (ANN) is proposed for predicting the electrical conductivity of DESs. • Data includes all measurements reported in the literature up to the date of writing. • The coefficient of determination ( R 2 ) was determined to be 0.993 in training and 0.984 in testing. • The ANN is considered reliable and could be utilized in the absence of experimental data. Due to their unique features, deep eutectic solvents (DESs) are well-known as promising and environmentally friendly solvents. Their use in various processes has recently become the focus of several research groups. However, designing DESs with optimal properties for a particular application requires many resources and is time-consuming. Therefore, it is crucial to develop predictive models to estimate the properties of DESs, which will save resources and time. Electrical conductivity is one of the most critical factors for the design, control and optimization of electrochemical processes. In this work, a model capable of estimating the electrical conductivity of DESs is presented. The model combines the Quantitative Structure-Property Relationships (QSPR) approach with artificial neural networks (ANNs) and COSMO-RS-based molecular parameters known as S σ profiles . . The QSPR-ANN training set consists of 2,266 data points from 191 DES mixtures with 334 compositions prepared from 8 anions, 26 cations, and 73 hydrogen bond donors (HBDs) measured at various temperatures ranging from 218 to 403 K. The coefficient of determination ( R 2 ) for the QSPR-ANN developed was 0.993 in training and 0.984 in testing. In conclusion, the proposed approach can reliably estimate the electrical conductivity of DESs and can be used to determine appropriate DESs with the desired electrical conductivity for various electrochemical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YuhangLiu完成签到,获得积分20
1秒前
qhdsyxy完成签到 ,获得积分10
1秒前
2秒前
子木完成签到,获得积分10
2秒前
小二郎应助麦咕咕采纳,获得10
2秒前
核桃发布了新的文献求助10
2秒前
BowieHuang应助侯总采纳,获得10
3秒前
MchemG应助侯总采纳,获得10
3秒前
3秒前
盐焗小星球完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
科研通AI6应助ccm采纳,获得10
4秒前
乐乐应助xiaoxin采纳,获得10
5秒前
Hermione完成签到,获得积分10
5秒前
zsy发布了新的文献求助10
7秒前
7秒前
dsajkdlas发布了新的文献求助10
7秒前
7秒前
7秒前
李健应助yx采纳,获得10
8秒前
sparks发布了新的文献求助10
8秒前
9秒前
郭guoguo发布了新的文献求助10
10秒前
alxat发布了新的文献求助10
11秒前
mountainbike完成签到,获得积分10
11秒前
无极微光应助知知采纳,获得20
12秒前
刘子怡完成签到 ,获得积分10
12秒前
13秒前
符昱发布了新的文献求助30
13秒前
领导范儿应助gougoubao采纳,获得10
14秒前
14秒前
14秒前
科研通AI6应助yin采纳,获得10
15秒前
希望天下0贩的0应助yin采纳,获得10
15秒前
汉堡包应助alxat采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589694
求助须知:如何正确求助?哪些是违规求助? 4674337
关于积分的说明 14793127
捐赠科研通 4628980
什么是DOI,文献DOI怎么找? 2532400
邀请新用户注册赠送积分活动 1501066
关于科研通互助平台的介绍 1468487