Energy consumption prediction of coal-fired unit boiler system based on different operating states

锅炉(水暖) 能源消耗 废物管理 环境科学 工艺工程 工程类 电气工程
作者
Xiaojing Ma,Jiawang Zhang,Zening Cheng,Xingchao Zhou,Yanxun Hou,Yangyang Sui
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:46 (1): 10063-10077
标识
DOI:10.1080/15567036.2024.2380879
摘要

The energy consumption of the coal-fired unit's boiler system varies significantly when accommodating flexible peak shaving demands. To aid staff in comprehending the boiler's operational status and optimize its performance, a prediction model of the energy consumption of the boiler system was established based on the different states of the unit operation. First, a dataset of boiler energy consumption under variable load was established based on theory of fuel-specific consumption, and the Mean Impact Value (MIV) algorithm was used to simplify the input features of the model. Second, the Aquila Optimizer (AO) with tent map, adaptive t-distribution, and opposites learning mechanism was introduced to determine the parameters in the prediction model. On this basis, the sliding-window method was used to classify the operating states based on the load of the unit, and the original dataset without operating state distinction, the steady state operating data, the load uplink data, and the load downlink data were used to establish Models 1–4, respectively. The result shows that Model 1 outperforms Model 2 with 24.45% and 18.22% lower aMAE and aRMSE, respectively. compared to Model 3, it shows a decrease of 24.07% and 16.98%. Compared to Model 1, Model 4 shows a reduction of 20.52% and 18.91% in aMAE and aRMSE, respectively. This indicates that distinguishing different operating states to establish boiler energy consumption prediction models can obtain better prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
weiyi完成签到,获得积分20
3秒前
陈颖发布了新的文献求助10
4秒前
hdy331完成签到,获得积分10
4秒前
WJM完成签到,获得积分10
5秒前
研友_ED5GK完成签到,获得积分10
5秒前
5秒前
LHQ发布了新的文献求助10
5秒前
所所应助优雅盼海采纳,获得10
6秒前
6秒前
千冬完成签到,获得积分20
6秒前
aiai发布了新的文献求助10
7秒前
上官若男应助开心的芒果采纳,获得10
9秒前
weiyi发布了新的文献求助10
9秒前
freshman3005完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
13秒前
14秒前
wanci应助氵酉采纳,获得10
15秒前
16秒前
干净翠桃发布了新的文献求助10
16秒前
孤独中的那一抹蓝完成签到,获得积分10
16秒前
16秒前
16秒前
liushu发布了新的文献求助10
18秒前
神勇从波发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
orixero应助善良问儿采纳,获得10
20秒前
xxiaobai发布了新的文献求助30
21秒前
正直的枕头完成签到,获得积分10
24秒前
陆露发布了新的文献求助10
24秒前
xfen完成签到,获得积分10
25秒前
小庸医完成签到 ,获得积分10
25秒前
26秒前
氵酉完成签到,获得积分10
26秒前
雨天发布了新的文献求助20
26秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
胶体中的相变和自组装 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3071073
求助须知:如何正确求助?哪些是违规求助? 2725040
关于积分的说明 7488445
捐赠科研通 2372386
什么是DOI,文献DOI怎么找? 1257966
科研通“疑难数据库(出版商)”最低求助积分说明 610164
版权声明 596906