Energy consumption prediction of coal-fired unit boiler system based on different operating states

锅炉(水暖) 能源消耗 废物管理 环境科学 工艺工程 工程类 电气工程
作者
Xiaojing Ma,Jiawang Zhang,Zening Cheng,Xingchao Zhou,Yanxun Hou,Yangyang Sui
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Taylor & Francis]
卷期号:46 (1): 10063-10077
标识
DOI:10.1080/15567036.2024.2380879
摘要

The energy consumption of the coal-fired unit's boiler system varies significantly when accommodating flexible peak shaving demands. To aid staff in comprehending the boiler's operational status and optimize its performance, a prediction model of the energy consumption of the boiler system was established based on the different states of the unit operation. First, a dataset of boiler energy consumption under variable load was established based on theory of fuel-specific consumption, and the Mean Impact Value (MIV) algorithm was used to simplify the input features of the model. Second, the Aquila Optimizer (AO) with tent map, adaptive t-distribution, and opposites learning mechanism was introduced to determine the parameters in the prediction model. On this basis, the sliding-window method was used to classify the operating states based on the load of the unit, and the original dataset without operating state distinction, the steady state operating data, the load uplink data, and the load downlink data were used to establish Models 1–4, respectively. The result shows that Model 1 outperforms Model 2 with 24.45% and 18.22% lower aMAE and aRMSE, respectively. compared to Model 3, it shows a decrease of 24.07% and 16.98%. Compared to Model 1, Model 4 shows a reduction of 20.52% and 18.91% in aMAE and aRMSE, respectively. This indicates that distinguishing different operating states to establish boiler energy consumption prediction models can obtain better prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YElv完成签到,获得积分10
1秒前
2秒前
Yangbingang完成签到,获得积分10
3秒前
4秒前
小胡完成签到,获得积分10
7秒前
高霍利完成签到,获得积分10
7秒前
小白先生完成签到,获得积分10
7秒前
悦耳沅完成签到,获得积分20
8秒前
zhui发布了新的文献求助10
8秒前
orixero应助cqq采纳,获得30
8秒前
8秒前
阔口阔落完成签到,获得积分10
8秒前
9秒前
10秒前
HSA发布了新的文献求助10
11秒前
小遇发布了新的文献求助10
12秒前
明亮元柏发布了新的文献求助30
12秒前
13秒前
dushicheng完成签到,获得积分10
14秒前
悦耳沅发布了新的文献求助10
14秒前
梁海萍发布了新的文献求助10
14秒前
15秒前
17秒前
刘文思发布了新的文献求助10
18秒前
落寞寒荷发布了新的文献求助30
20秒前
21秒前
所所应助至幸采纳,获得10
21秒前
T拐拐发布了新的文献求助10
21秒前
23秒前
23秒前
23秒前
汤泡泡完成签到,获得积分20
24秒前
林好人完成签到,获得积分10
25秒前
Ranrunn完成签到,获得积分10
26秒前
汤泡泡发布了新的文献求助10
27秒前
浩二发布了新的文献求助10
28秒前
28秒前
阜睿发布了新的文献求助10
29秒前
小青完成签到 ,获得积分10
30秒前
魔法师完成签到,获得积分0
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997731
求助须知:如何正确求助?哪些是违规求助? 3537261
关于积分的说明 11271137
捐赠科研通 3276409
什么是DOI,文献DOI怎么找? 1806986
邀请新用户注册赠送积分活动 883639
科研通“疑难数据库(出版商)”最低求助积分说明 809982