Algorithm for Locating Apical Meristematic Tissue of Weeds Based on YOLO Instance Segmentation

分生组织 分割 解剖 生物 计算机科学 人工智能 植物 开枪
作者
Daode Zhang,Lu Rui,Zhe Guo,Zhiyong Yang,Siqi Wang,Xinyu Hu
出处
期刊:Agronomy [MDPI AG]
卷期号:14 (9): 2121-2121
标识
DOI:10.3390/agronomy14092121
摘要

Laser technology can be used to control weeds by irradiating the apical meristematic tissue (AMT) of weeds when they are still seedlings. Two factors are necessary for the successful large-scale implementation of this technique: the ability to accurately identify the apical meristematic tissue and the effectiveness of the localization algorithm used in the process. Based on this, this study proposes a lightweight weed AMT localization algorithm based on YOLO (look only once) instance segmentation. The YOLOv8n-seg network undergoes a lightweight design enhancement by integrating the FasterNet lightweight network as its backbone, resulting in the F-YOLOv8n-seg model. This modification effectively reduces the number of parameters and computational demands during the convolution process, thereby achieving a more efficient model. Subsequently, F-YOLOv8n-seg is combined with the connected domain analysis algorithm (CDA), yielding the F-YOLOv8n-seg-CDA model. This integration enables the precise localization of the AMT of weeds by calculating the center-of-mass coordinates of the connected domains. The experimental results indicate that the optimized model significantly outperforms the original model; the optimized model reduces floating-point computations by 26.7% and the model size by 38.2%. In particular, the floating-point calculation is decreased to 8.9 GFLOPs, and the model size is lowered to 4.2 MB. Comparing this improved model against YOLOv5s-seg and YOLOv10n-seg, it is lighter. Furthermore, it exhibits exceptional segmentation accuracy, with a 97.2% accuracy rate. Experimental tests conducted on five different weed species demonstrated that F-YOLOv8n-seg-CDA exhibits strong generalization capabilities. The combined accuracy of the algorithm for detecting these weeds was 81%. Notably, dicotyledonous weeds were detected with up to 94%. Additionally, the algorithm achieved an average inference speed of 82.9 frames per second. These results indicate that the algorithm is suitable for the real-time detection of apical meristematic tissues across multiple weed species. Furthermore, the experimental results demonstrated the impact of distinctive variations in weed morphology on identifying the location of the AMT of weeds. It was discovered that dicotyledonous and monocotyledonous weeds differed significantly in terms of the detection effect, with dicotyledonous weeds having significantly higher detection accuracy than monocotyledonous weeds. This discovery can offer novel insights and avenues for future investigation into the identification and location of the AMT of weeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
may发布了新的文献求助10
刚刚
大帅的威严完成签到,获得积分10
刚刚
克劳德发布了新的文献求助10
1秒前
小桔子发布了新的文献求助10
1秒前
大方蛟凤发布了新的文献求助10
1秒前
一笑倾城完成签到,获得积分10
2秒前
冯大哥发布了新的文献求助10
2秒前
2秒前
2秒前
SciGPT应助zsp采纳,获得10
3秒前
Hang发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
田様应助蟹蟹X采纳,获得30
4秒前
科目三应助开心夏真采纳,获得10
4秒前
5秒前
斯文败类应助niannnccc采纳,获得10
5秒前
敏感板栗完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
气温仍然完成签到,获得积分10
6秒前
7秒前
十里故清欢完成签到 ,获得积分10
7秒前
一笑倾城发布了新的文献求助10
7秒前
xcxc完成签到,获得积分10
7秒前
百氚发布了新的文献求助20
7秒前
苏小寰完成签到,获得积分10
8秒前
8秒前
8秒前
程院发布了新的文献求助10
8秒前
9秒前
phenory发布了新的文献求助10
9秒前
乐乐应助辛勤的可仁采纳,获得10
10秒前
11秒前
钟博士完成签到,获得积分10
11秒前
秦秦发布了新的文献求助10
12秒前
甜蜜冰萍发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3558083
求助须知:如何正确求助?哪些是违规求助? 3133203
关于积分的说明 9401074
捐赠科研通 2833299
什么是DOI,文献DOI怎么找? 1557421
邀请新用户注册赠送积分活动 727253
科研通“疑难数据库(出版商)”最低求助积分说明 716257