吸附
倍半硅氧烷
色散(光学)
化学
水溶液
色谱法
共价键
共价有机骨架
高分子
化学工程
分子
聚合物
有机化学
生物化学
光学
物理
工程类
作者
Yidong Xu,Xue Chen,Dexiu Zhang,Jiwei Shen,Chaozhan Wang,Yinmao Wei
出处
期刊:Food Chemistry
[Elsevier BV]
日期:2024-08-13
卷期号:461: 140882-140882
被引量:2
标识
DOI:10.1016/j.foodchem.2024.140882
摘要
In case of organic frameworks (COFs) as adsorbents in the pretreatment of complex food matrices, challenges such as poor dispersion and non-specific adsorption of interfering macromolecules like proteins are often encountered. To address this issue, this work prepared a three-dimensional covalent organic framework (3D-COF) with a novel bcu topology based on polyhedral oligomeric silsesquioxane (POSS). Subsequently, gluconolactone (GDL) was modified onto the external surface of the material via the reaction with the exposed reactive residues. The resulting POSS-COF@GDL adsorbent has an enhanced hydrophilicity in the external surface, thereby significantly improves the dispersion of materials in aqueous solution and reduces the adsorption ability toward protein. Whereas, the inner of material retains hydrophobic pores that exhibit high adsorption efficiency to small hydrophobic molecules. Compared with the traditional pretreatment methods, POSS-COF@GDL can directly extract bisphenols (BPs) in milk samples without any additional treatment. The established sample pretreatment method is coupled with high-performance liquid chromatography-ultraviolet detection (HPLC-UV), resulting in recoveries of 71.8 to 93.6%, intra- and inter-day relative standard deviations (RSDs) of <8.3%, and limits of detection (LODs) of 0.042-0.16 ng∙mL
科研通智能强力驱动
Strongly Powered by AbleSci AI