Mesoscale synergistic effect mechanism of aggregate grading and specimen size on compressive strength of concrete with large aggregate size

抗压强度 中尺度气象学 材料科学 骨料(复合) 复合材料 岩土工程 地质学 气候学
作者
Yuanxun Zheng,Yu Zhang,Jingbo Zhuo,Peng Zhang,Shaowei Hu
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:367: 130346-130346 被引量:43
标识
DOI:10.1016/j.conbuildmat.2023.130346
摘要

In this paper, a 2D finite element model with a mesoscale level was established. The effects of content, maximum particle size, and shape of aggregate on the strength of concrete were simulated. In addition, five mesoscopic models of aggregate gradation and specimen side length (100–450 mm) were established to investigate the influence law of aggregate grading and model size on the compressive strength of concrete. The simulation results were also compared and verified with four theoretical size-effect models. The results showed that the compressive strength shows a trend of decreasing and then increasing with the increase of aggregate content and falling with the growth of maximum aggregate size dmax. The peak stress of convex polygonal aggregates is higher than that of round and elliptical. In addition, when the ratio of model side length to the maximum aggregate particle size is about 3.5, the compressive strength gradually decreases with the increase of specimen size, up to 27.65 % decreased, showing a pronounced size effect. After comparative analysis, the simulated data in this paper fitted well with the Bažant’s Type-2, Kim’s modified, Jin’s modified, and Carpinteri’s size effect law (SEL). In addition, the data obtained from the simulation of this paper would better reflect the existing test conclusions. The mesoscale model established in this paper can significantly improve the effectiveness and efficiency of full-graded concrete modeling, and better simulate the strength difference between full-graded and wet-screened specimens. The difficulties in the mesoscale numerical simulation are solved to a certain extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈宇完成签到,获得积分10
1秒前
chen完成签到 ,获得积分10
1秒前
3秒前
科研通AI5应助洛苏采纳,获得10
4秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
Jiangzhibing发布了新的文献求助10
8秒前
zhujingyao完成签到,获得积分10
9秒前
9秒前
浮游应助生椰拿铁死忠粉采纳,获得10
9秒前
10秒前
12秒前
12秒前
13秒前
13秒前
TTT完成签到,获得积分10
13秒前
彭于晏应助零点黄昏采纳,获得10
14秒前
wjx发布了新的文献求助10
15秒前
Guo完成签到,获得积分10
16秒前
清爽难敌发布了新的文献求助10
17秒前
17秒前
科目三应助TCMning采纳,获得10
18秒前
量子星尘发布了新的文献求助150
18秒前
18秒前
18秒前
19秒前
19秒前
科研通AI6应助陈宏伟采纳,获得10
20秒前
小二郎应助dzh采纳,获得10
21秒前
lulu8809完成签到,获得积分10
24秒前
香蕉觅云应助xing采纳,获得10
24秒前
星辰大海应助达八八八采纳,获得10
24秒前
大意的绿蓉完成签到,获得积分10
25秒前
xuyun发布了新的文献求助10
25秒前
木木夕云发布了新的文献求助10
25秒前
26秒前
明月清风发布了新的文献求助30
26秒前
标致冰海完成签到 ,获得积分10
27秒前
yj应助星星采纳,获得10
28秒前
28秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125754
求助须知:如何正确求助?哪些是违规求助? 4329444
关于积分的说明 13491137
捐赠科研通 4164408
什么是DOI,文献DOI怎么找? 2282909
邀请新用户注册赠送积分活动 1283936
关于科研通互助平台的介绍 1223344