Bearing remaining useful life prediction using self-adaptive graph convolutional networks with self-attention mechanism

稳健性(进化) 计算机科学 循环神经网络 图形 卷积神经网络 杠杆(统计) 机器学习 模式识别(心理学) 人工智能 数据挖掘 人工神经网络 理论计算机科学 生物化学 基因 化学
作者
Yupeng Wei,Dazhong Wu,Janis Terpenny
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:188: 110010-110010 被引量:44
标识
DOI:10.1016/j.ymssp.2022.110010
摘要

Bearings are commonly used to reduce friction between moving parts. Bearings may fail due to lubrication failure, contamination, corrosion, and fatigue. To prevent bearing failures, it is important to predict the remaining useful life (RUL) of bearings. While many data-driven methods have been introduced, very few studies have considered the correlation of features at different time points, such a correlation could be used to identify and aggregate features at different time points for improving the robustness of predictive models. Moreover, many existing data-driven methods leverage neural networks with recurrent characteristics such as recurrent neural network (RNN) and long short term memory (LSTM). These methods are ineffective in processing long sequences and require longer training time due to the recurrent characteristics. To address these issues, a Siamese LSTM network is firstly introduced to classify degradation stages before predicting the RUL of bearings. Then we introduce a self-adaptive graph convolutional network (SAGCN) along with a self-attention mechanism in order to consider the correlation of features at different time points without using recurrent characteristics. Experimental results have demonstrated that the proposed method can accurately predict the RUL with a minimum average root mean squared error of 0.119, and outperforms existing data-driven methods, such as graph convolutional network, convolutional LSTM, convolutional neural network, and generative adversarial network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
SciGPT应助Amymyshirley采纳,获得10
3秒前
4秒前
6秒前
huang发布了新的文献求助10
6秒前
Sabrina完成签到,获得积分10
7秒前
李健的小迷弟应助feiyang采纳,获得10
8秒前
波波完成签到 ,获得积分10
9秒前
Panruyi完成签到,获得积分10
10秒前
11秒前
zwhy发布了新的文献求助10
11秒前
12秒前
13秒前
Esfuerzo完成签到,获得积分10
14秒前
虚心完成签到 ,获得积分10
14秒前
16秒前
17秒前
3w完成签到,获得积分10
17秒前
kingwill应助moon采纳,获得20
18秒前
彭于晏应助evelyn采纳,获得10
18秒前
19秒前
李健应助初遇之时最暖采纳,获得10
20秒前
20秒前
Sunny发布了新的文献求助10
21秒前
21秒前
21秒前
angelinazh发布了新的文献求助10
23秒前
小黑喵应助妮妮采纳,获得20
23秒前
充电宝应助nenoaowu采纳,获得10
23秒前
实验老六发布了新的文献求助10
24秒前
锦七完成签到,获得积分10
24秒前
胖心怡发布了新的文献求助10
25秒前
yueqi完成签到 ,获得积分10
27秒前
研友_楼灵煌完成签到,获得积分10
31秒前
实验老六完成签到,获得积分10
33秒前
缥缈的寒梅完成签到 ,获得积分10
33秒前
123发布了新的文献求助10
35秒前
angelinazh完成签到,获得积分0
35秒前
动听文轩发布了新的文献求助10
36秒前
学术芽完成签到,获得积分10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461079
求助须知:如何正确求助?哪些是违规求助? 3054882
关于积分的说明 9045217
捐赠科研通 2744757
什么是DOI,文献DOI怎么找? 1505651
科研通“疑难数据库(出版商)”最低求助积分说明 695763
邀请新用户注册赠送积分活动 695173