Simulation Study of Dynamic Reactive Power Optimization in Distribution Network with DG Based on Improved Lion Swarm Algorithm

粒子群优化 交流电源 计算机科学 数学优化 多群优化 算法 群体行为 电压 数学 工程类 电气工程
作者
Tianyang Wu,Qiang Li,Bing Fang,Nannan Zhang,Haowei Qu,Jiankai Fang,Lidi Wang
出处
期刊:Communications in computer and information science 卷期号:: 138-152
标识
DOI:10.1007/978-981-19-9195-0_12
摘要

This paper proposes a spectral clustering method in consideration of the operational issues of distribution networks like load fluctuation, intermittent power output, reactive power flow, and daily switching frequency of reactive power compensation. We divide the daily load curve of the distribution network with distributed generation units (DG) into time periods, and set the minimum network loss and voltage offset of each time period as the objective function. Then we use this method to establish a time-divided dynamic reactive power optimization (RPO) mathematical model of DG. Since the traditional random lion swarm optimization (LSO) can hardly escape a local optimum, a random black hole mechanism is introduced to improve the LSO algorithm, and to formulate a random black hole based lion swarm optimization (RBH-LSO) algorithm. This paper takes the improved IEEE 33-node system as the sample object. The RBH-LSO algorithm, the LSO algorithm and the particle swarm optimization (PSO) algorithm are mutually used to realize the optimization of this system. After the simulation results of the optimization are analyzed, this paper demonstrates, as a summary, that the RBH-LSO algorithm has exceeding excellence in performance and proves to be an effective mechanism for dynamic RPO of distribution networks with DG.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
共享精神应助萌酱采纳,获得10
1秒前
zxwz发布了新的文献求助10
1秒前
猪猪hero应助xuan采纳,获得10
1秒前
科研通AI6应助xuan采纳,获得10
1秒前
Ava应助xuan采纳,获得10
1秒前
酷波er应助xuan采纳,获得10
1秒前
科研通AI6应助xuan采纳,获得10
1秒前
Jared应助xuan采纳,获得10
1秒前
小羊完成签到 ,获得积分10
1秒前
科研通AI6应助xuan采纳,获得10
1秒前
田様应助xuan采纳,获得10
1秒前
独特的追命应助xuan采纳,获得10
1秒前
赘婿应助xuan采纳,获得10
1秒前
1秒前
hgm完成签到 ,获得积分10
2秒前
3秒前
Liu完成签到,获得积分10
3秒前
lmz发布了新的文献求助10
3秒前
山头虎发布了新的文献求助30
3秒前
香蕉觅云应助康师傅采纳,获得10
3秒前
烟花应助CMUSK采纳,获得10
4秒前
4秒前
SciGPT应助积极行天采纳,获得10
4秒前
4秒前
4秒前
文静曼安发布了新的文献求助10
5秒前
lzxlzxlzx发布了新的文献求助10
5秒前
浮游应助小巧的柚子采纳,获得10
6秒前
听雨秀才完成签到,获得积分20
6秒前
6秒前
6秒前
Leon_nomoreLess完成签到 ,获得积分10
6秒前
研友_Z30Kz8完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647471
求助须知:如何正确求助?哪些是违规求助? 4773575
关于积分的说明 15039580
捐赠科研通 4806177
什么是DOI,文献DOI怎么找? 2570137
邀请新用户注册赠送积分活动 1527027
关于科研通互助平台的介绍 1486108