Hyperspectral Image Classification Based on Pyramid Coordinate Attention and Weighted Self-Distillation

高光谱成像 计算机科学 人工智能 模式识别(心理学) 棱锥(几何) 空间分析 特征提取 遥感 数学 地理 几何学
作者
Ronghua Shang,Jinhong Ren,Songling Zhu,Weitong Zhang,Jie Feng,Yangyang Li,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:19
标识
DOI:10.1109/tgrs.2022.3224604
摘要

Attention mechanism-based Hyperspectral Image (HSI) classification algorithms typically extract spectral and spatial features by spectral attention and spatial attention network respectively. However, these algorithms lack joint attention and ignore imbalanced samples, leading to insufficient information extraction. To address this problem, this paper proposes a novel HSI classification algorithm based on the pyramidal coordinate attention and weighted self-distillation (PCA-WSD). To perform the joint attention of spectral and spatial features, the proposed PCA mechanism uses spectral attention to cope with the diverse spatial features. The PCA mechanism consists of two components. First, the spatial pyramid coordinate squeeze (SPCS) is designed to aggregate spatial features with local and global information. Then, the tailored spatial pyramid coordinate excitation (SPCE) adaptively enhances their informative spectral features for the obtained spatial features, realizing the joint attention to spectral-spatial features. Further, considering the imbalance of samples, WSD is proposed. Specifically, weighted cross-entropy is integrated into WSD. Extensive experiments are evaluated on the four HSI benchmark datasets: Indian Pine (IP), Pavia University (UP), Kennedy Space Center (KSC), and Pavia Center (PC). Compared with the seven advanced algorithms, experimental results of the proposed algorithm 1 . reveal superior classification performance, especially for the imbalanced samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
zyq完成签到,获得积分10
3秒前
万能图书馆应助YBW采纳,获得10
4秒前
坦率灵槐应助太阳阳采纳,获得10
4秒前
showmaker完成签到,获得积分10
5秒前
5秒前
5秒前
科研炸巴完成签到,获得积分10
5秒前
7秒前
淅淅沥沥发布了新的文献求助10
7秒前
7秒前
朱祥龙发布了新的文献求助10
9秒前
lhx发布了新的文献求助10
9秒前
三土应助hkh采纳,获得10
9秒前
无辜的丹雪应助hkh采纳,获得10
9秒前
霜降应助hkh采纳,获得10
9秒前
专注白昼应助hkh采纳,获得10
9秒前
别不开星完成签到,获得积分10
10秒前
虚拟的鞋垫完成签到,获得积分10
10秒前
gege发布了新的文献求助10
10秒前
10秒前
10秒前
科研炸巴发布了新的文献求助10
10秒前
11秒前
ZSH发布了新的文献求助10
12秒前
13秒前
13秒前
zzzwww发布了新的文献求助10
16秒前
kevindm发布了新的文献求助30
16秒前
16秒前
善良茗茗发布了新的文献求助10
17秒前
可爱的函函应助lhx采纳,获得10
17秒前
17秒前
yuzhou完成签到 ,获得积分10
18秒前
18秒前
逢强必赢完成签到,获得积分10
19秒前
科研通AI6应助xixi采纳,获得10
19秒前
21秒前
烟花应助zhaosibo020118采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573