Hyperspectral Image Classification Based on Pyramid Coordinate Attention and Weighted Self-Distillation

高光谱成像 计算机科学 人工智能 模式识别(心理学) 棱锥(几何) 空间分析 特征提取 遥感 数学 地理 几何学
作者
Ronghua Shang,Jinhong Ren,Songling Zhu,Weitong Zhang,Jie Feng,Yangyang Li,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:8
标识
DOI:10.1109/tgrs.2022.3224604
摘要

Attention mechanism-based Hyperspectral Image (HSI) classification algorithms typically extract spectral and spatial features by spectral attention and spatial attention network respectively. However, these algorithms lack joint attention and ignore imbalanced samples, leading to insufficient information extraction. To address this problem, this paper proposes a novel HSI classification algorithm based on the pyramidal coordinate attention and weighted self-distillation (PCA-WSD). To perform the joint attention of spectral and spatial features, the proposed PCA mechanism uses spectral attention to cope with the diverse spatial features. The PCA mechanism consists of two components. First, the spatial pyramid coordinate squeeze (SPCS) is designed to aggregate spatial features with local and global information. Then, the tailored spatial pyramid coordinate excitation (SPCE) adaptively enhances their informative spectral features for the obtained spatial features, realizing the joint attention to spectral-spatial features. Further, considering the imbalance of samples, WSD is proposed. Specifically, weighted cross-entropy is integrated into WSD. Extensive experiments are evaluated on the four HSI benchmark datasets: Indian Pine (IP), Pavia University (UP), Kennedy Space Center (KSC), and Pavia Center (PC). Compared with the seven advanced algorithms, experimental results of the proposed algorithm 1 . reveal superior classification performance, especially for the imbalanced samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rjy发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
wujiao完成签到,获得积分10
3秒前
所所应助10采纳,获得10
4秒前
脑洞疼应助pzd采纳,获得10
5秒前
完美世界应助曲书文采纳,获得10
6秒前
葭月十七发布了新的文献求助10
6秒前
threewei发布了新的文献求助10
6秒前
翻翻发布了新的文献求助30
7秒前
壮观静柏完成签到 ,获得积分10
7秒前
合适的猎豹完成签到 ,获得积分10
7秒前
秋半梦应助Xiaopu采纳,获得10
7秒前
Owen应助Annie采纳,获得10
8秒前
Solitude发布了新的文献求助20
10秒前
10秒前
李健应助风枫叶采纳,获得10
11秒前
温敏应助wanliduxing采纳,获得50
11秒前
哇咔咔发布了新的文献求助10
15秒前
由天与发布了新的文献求助100
15秒前
小蘑菇应助翻翻采纳,获得10
16秒前
19秒前
李爱国应助Rjy采纳,获得10
20秒前
23秒前
23秒前
灵敏发布了新的文献求助30
24秒前
曲书文发布了新的文献求助10
25秒前
喀纳斯湖怪完成签到,获得积分10
27秒前
10发布了新的文献求助10
28秒前
29秒前
29秒前
韩1完成签到,获得积分10
29秒前
迷你的代秋完成签到,获得积分10
30秒前
nini发布了新的文献求助30
30秒前
31秒前
十八发布了新的文献求助10
32秒前
甜甜玫瑰应助科研通管家采纳,获得10
33秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138860
求助须知:如何正确求助?哪些是违规求助? 2789795
关于积分的说明 7792655
捐赠科研通 2446147
什么是DOI,文献DOI怎么找? 1300890
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079