潜在类模型
潜在增长模型
潜变量模型
潜变量
混合模型
地方独立性
结构方程建模
增长曲线(统计)
纵向数据
计量经济学
心理学
变量(数学)
统计模型
纵向研究
统计
计算机科学
发展心理学
数学
数据挖掘
数学分析
作者
Kristoffer S. Berlin,Gilbert R. Parra,Natalie A. Williams
出处
期刊:Journal of Pediatric Psychology
[Oxford University Press]
日期:2013-11-25
卷期号:39 (2): 188-203
被引量:353
标识
DOI:10.1093/jpepsy/jst085
摘要
Pediatric psychologists are often interested in finding patterns in heterogeneous longitudinal data. Latent variable mixture modeling is an emerging statistical approach that models such heterogeneity by classifying individuals into unobserved groupings (latent classes) with similar (more homogenous) patterns. The purpose of the second of a 2-article set is to offer a nontechnical introduction to longitudinal latent variable mixture modeling.3 latent variable approaches to modeling longitudinal data are reviewed and distinguished.Step-by-step pediatric psychology examples of latent growth curve modeling, latent class growth analysis, and growth mixture modeling are provided using the Early Childhood Longitudinal Study-Kindergarten Class of 1998-1999 data file.Latent variable mixture modeling is a technique that is useful to pediatric psychologists who wish to find groupings of individuals who share similar longitudinal data patterns to determine the extent to which these patterns may relate to variables of interest.
科研通智能强力驱动
Strongly Powered by AbleSci AI