孤立電子對在氧化物、氮化物、鹵化物晶體之光學非線性所扮演的角色

波长 激光器 光学 材料科学 二次谐波产生 光电子学 高次谐波产生 物理
作者
Luo Hong
标识
DOI:10.6846/tku.2005.00008
摘要

Laser sources of different wavelengths have their own important use in industrial applications as well as fundamental researches, but since light is emitted as a result of transition between electronic states, the available wavelengths is limited in the entire EM wave spectrum. Frequency conversion techniques using Non-linear optical crystals allow the production of laser beam at different wavelengths, and are therefore very desirable. For example, harmonic generation can be used to produce laser beam at shorter wavelength which is essential for the next generation lithography, optical storage and fiber communication. Since each NLO crystal works at certain frequency range and has their own characteristics, it is also desirable to search for wider variety of them. A systematic study of the mechanism of NLO properties of these crystals will be beneficial. In UV/Visible range, oxide crystals are one of the most important types, which usually have high damage threshold, making them durable under high laser power operation. There has already some progress in the past on understanding the mechanism of NLO properties of oxides. Borate, for example, was found to have largely due to their anion group. In this work, we have proposed a new analysis scheme, which reveals the main factor of optical non-linearity from the picture of electron density. Using one of our analyzing tools band-resolved of second order susceptibility, one can identify which several orbitals or bands contribute most in a molecule. This work extends the idea further and makes it applied on solids even more easily. This is achieved by summing each orbital density based on the SHG weight. Through this SHG-density plots we can visualize the electron densities that have with significant contribution to the optical nonlinearity and reveal the SHG mechanism. Using this method that we found that lone-pair electrons play the major role in non-linear optics mechanism of oxide family NLO crystals. In order to identify lone-pair electrons, the technique of “Lone-pair identification scheme” is developed. After testing this scheme on a few simple molecules known to have lone-pair, the reliability of the scheme is confirmed. This method is then applied to the structures which we are interested in, and it dose prove our claim — lone-pair is one of the significant source leads to the non-linear optical properties of oxide. This leads to a further understanding on the mechanism of non-linear optical materials. Further more, non-linear optical Nitride and Halide crystals which are next to VIA group are also analyzed by this technique. Some preliminary results were obtained which might be useful toward a general understanding on the properties of various non-linear optical materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
榆木小鸟完成签到 ,获得积分10
刚刚
科研通AI5应助徐徐采纳,获得10
刚刚
1秒前
1秒前
zee完成签到 ,获得积分20
1秒前
单薄明雪完成签到,获得积分10
1秒前
2秒前
万能图书馆应助Godspeed采纳,获得10
2秒前
孟陬十一发布了新的文献求助10
2秒前
vivi猫小咪完成签到,获得积分10
2秒前
2秒前
bkagyin应助amumu采纳,获得10
3秒前
南方姑娘发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
丘比特应助Wu采纳,获得10
3秒前
4秒前
乐乐应助luuuuuing采纳,获得30
4秒前
5秒前
丘比特应助anan采纳,获得10
5秒前
5秒前
动人的老黑完成签到 ,获得积分10
6秒前
星星泡饭发布了新的文献求助10
6秒前
7秒前
Silence完成签到,获得积分10
7秒前
yan儿发布了新的文献求助10
8秒前
pearl完成签到,获得积分10
9秒前
hahah发布了新的文献求助10
9秒前
请叫我风吹麦浪应助胖豆采纳,获得10
9秒前
无花果应助幸福胡萝卜采纳,获得10
9秒前
10秒前
卡卡发布了新的文献求助10
10秒前
wanci应助风趣的天真采纳,获得10
10秒前
Silence发布了新的文献求助10
10秒前
清爽老九发布了新的文献求助100
10秒前
11秒前
衔尾蛇发布了新的文献求助10
11秒前
小蔡会有猫的完成签到,获得积分10
11秒前
zhai发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762