量子隧道
凝聚态物理
领域(数学分析)
物理
磁畴壁(磁性)
铁电性
电子
材料科学
量子力学
磁场
磁化
数学
电介质
数学分析
作者
Ming Li,Lingling Tao,Julian Velev,Evgeny Y. Tsymbal
出处
期刊:Physical review
日期:2018-04-10
卷期号:97 (15)
被引量:23
标识
DOI:10.1103/physrevb.97.155121
摘要
Motivated by recent experimental observations, we explore electron transport properties of a ferroelectric tunnel junction (FTJ) with an embedded head-to-head ferroelectric domain wall, using first-principles density-functional theory calculations. We consider a FTJ with $\mathrm{L}{\mathrm{a}}_{0.5}\mathrm{S}{\mathrm{r}}_{0.5}\mathrm{Mn}{\mathrm{O}}_{3}$ electrodes separated by a $\mathrm{BaTi}{\mathrm{O}}_{3}$ barrier layer and show that an in-plane charged domain wall in the ferroelectric $\mathrm{BaTi}{\mathrm{O}}_{3}$ can be induced by polar interfaces. The resulting $\mathsf{V}$-shaped electrostatic potential profile across the $\mathrm{BaTi}{\mathrm{O}}_{3}$ layer creates a quantum well and leads to the formation of a two-dimensional electron gas, which stabilizes the domain wall. The confined electronic states in the barrier are responsible for resonant tunneling as is evident from our quantum-transport calculations. We find that the resonant tunneling is an orbital selective process, which leads to sharp spikes in the momentum- and energy-resolved transmission spectra. Our results indicate that domain walls embedded in FTJs can be used to control the electron transport.
科研通智能强力驱动
Strongly Powered by AbleSci AI