Multilayered and hierarchical structured NiCo double hydroxide nanosheets generated on porous MgCo2O4 nanowire arrays for high performance supercapacitors
纳米技术
电化学
电解质
纳米片
电流密度
比表面积
功率密度
多孔性
扫描电子显微镜
制作
作者
Zhiqiang Liu,Yuxue Zhong,Yanling Qiu,Liang Cui,Wenrong Yang,Joselito M. Razal,Colin J. Barrow,Jingquan Liu
Abstract In this work, MgCo2O4@NiCo layered double hydroxide (LDH) hierarchical structure nanocomposites on Ni foam (NF) are synthesized by facile hydrothermal and calcination methods. MgCo2O4/NF is synthesized first via a hydrothermal reaction and annealing treatment and then utilized to prepare MgCo2O4@NiCo-LDH/NF hierarchical structure nanocomposites via the second hydrothermal process. It is found that the MgCo2O4@NiCo-LDH/NF nanocomposite prepared from 9 h hydrothermal reaction (MC@NC-LDH-2) exhibits an excellent specific capacitance of 5701.2 F g−1 at the current density of 1 A g−1. Moreover, a high capacitance retention (83.7% maintained after 5000 cycles) and a low internal resistance (Rs) (0.783 Ω) can be achieved. Furthermore, a quasi-solid state asymmetric supercapacitor (ASC) is assembled using MgCo2O4@NiCo-LDH/NF-2 as positive electrode and activated carbon (AC) as negative electrode. The as-fabricated MgCo2O4@NiCo-LDH/NF-2//AC ASC shows a high energy density of 89.79 Wh kg−1 at 800 W kg−1. Meanwhile, the MgCo2O4@NiCo-LDH/NF-2//AC ASC device possesses an excellent cycling stability of 89.03% retention of the initial capacitance after 5000 cycles and two ASC devices connected in series can light up a LED bulb for 15 min. Our results manifest that these hierarchical MgCo2O4@NiCo-LDH composites could envision huge potential application in energy storage devices.