亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using a national surgical database to predict complications following posterior lumbar surgery and comparing the area under the curve and F1-score for the assessment of prognostic capability

医学 接收机工作特性 逻辑回归 外科 腰椎 曲线下面积 队列 回顾性队列研究 内科学
作者
Zachary DeVries,Eric Locke,Mohamad Hoda,Dita Moravek,Kim Phan,Alexandra Stratton,Stephen Kingwell,Eugene K. Wai,Philippe Phan
出处
期刊:The Spine Journal [Elsevier BV]
卷期号:21 (7): 1135-1142 被引量:67
标识
DOI:10.1016/j.spinee.2021.02.007
摘要

Abstract BACKGROUND With spinal surgery rates increasing in North America, models that are able to accurately predict which patients are at greater risk of developing complications are highly warranted. However, the previously published methods which have used large, multi-centre databases to develop their prediction models have relied on the receiver operator characteristics curve with the associated area under the curve (AUC) to assess their model's performance. Recently, it has been found that a precision-recall curve with the associated F1-score could provide a more realistic analysis for these models. PURPOSE To develop a logistic regression (LR) model for the prediction of complications following posterior lumbar spine surgery and to then assess for any difference in performance of the model when using the AUC versus the F1-score. STUDY DESIGN Retrospective review of a prospective cohort. PATIENT SAMPLE The American College of Surgeons National Surgical Quality Improvement Program (NSQIP) registry was used. All patients that underwent posterior lumbar spine surgery between 2005 to 2016 with appropriate data were included. OUTCOME MEASURES Both the AUC and F1-score were utilized to assess the prognostic performance of the prediction model. METHODS In order to develop the LR model used to predict a complication during or following spine surgery, 19 variables were selected by three orthopedic spine surgeons from the NSQIP registry. Two datasets were developed for this analysis: (1) an imbalanced dataset, which was taken directly from the NSQIP registry, and (2) a down-sampled set. The purpose of the down-sampled set was to balance the data in order to evaluate whether balancing the data had an effect on model performance. The AUC and F1-score were applied to both of these datasets. RESULTS Within the NSQIP database, 52,787 spine surgery cases were identified of which only 10% of these cases had complications during surgery. Applying the LR model showed a large difference between the AUC (0.69) and the F1 score (0.075) on the imbalanced dataset. However, no major differences existed between the AUC and F1-score when the data was balanced and the LR model was reapplied (0.69 and 0.62, AUC and F1-score, respectively). CONCLUSIONS The F1-score detected a drastically lower performance for the prediction of complications when using the imbalanced data, but detected a performance similar to the AUC level when balancing techniques were utilized for the dataset. This difference is due to a low precision score when many false positive classifications are present, which is not identified when using the AUC value. This lowers the utility of the AUC score, as many of the datasets used in medicine are imbalanced. Therefore, we recommend using the F1-score on large, prospective databases when the data is imbalanced with a large amount of true negative classifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
14秒前
zyz发布了新的文献求助20
19秒前
SDNUDRUG发布了新的文献求助10
29秒前
39秒前
SDNUDRUG完成签到,获得积分10
40秒前
大模型应助隋嫣然采纳,获得10
43秒前
潦草小狗完成签到 ,获得积分10
50秒前
tutu完成签到,获得积分10
54秒前
58秒前
英俊的铭应助zyz采纳,获得10
58秒前
鲁路修完成签到,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
PLEDGE完成签到,获得积分10
1分钟前
chuan发布了新的文献求助10
1分钟前
chuan完成签到,获得积分10
1分钟前
1分钟前
长街完成签到,获得积分10
1分钟前
长街发布了新的文献求助10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
PengDai发布了新的文献求助200
2分钟前
2分钟前
YOGA1115发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
CodeCraft应助PengDai采纳,获得10
3分钟前
3分钟前
Meya发布了新的文献求助10
3分钟前
Meya完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
Sunsheng应助娇气的亦云采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5031321
求助须知:如何正确求助?哪些是违规求助? 4266008
关于积分的说明 13298415
捐赠科研通 4075173
什么是DOI,文献DOI怎么找? 2228903
邀请新用户注册赠送积分活动 1237490
关于科研通互助平台的介绍 1162295