氧化应激
谷胱甘肽
精子
促黄体激素
男科
睾酮(贴片)
药理学
化学
谷胱甘肽还原酶
精子活力
生物化学
超氧化物歧化酶
谷胱甘肽过氧化物酶
生物
激素
内分泌学
医学
酶
作者
Cheng-niu Wang,Mengmeng Sang,Shengnan Gong,Jinfei Yang,C. Yan Cheng,Fei Sun
标识
DOI:10.1016/j.bioorg.2020.104295
摘要
Two synthesized resveratrol analogs from our laboratory, namely pinosylvin (3,5-dihydroxy-trans-stilbene, PIN) and 4,4′-dihydroxystilbene (DHS), have been carefully evaluated for treatment of oligoasthenospermia. Recent studies have demonstrated that PIN and DHS improved sperm quality in the mouse. However, the mechanism of action of PIN and DHS on oligoasthenospermia remains unknown. Herein, we investigated the mechanistic basis for improvements in sperm parameters by PIN and DHS in a mouse model of oligoasthenospermia induced by treatment with busulfan (BUS) at 6 mg/kg b.w.. Two weeks following busulfan treatment, mice were administered different concentrations of PIN or DHS daily for 2 consecutive weeks. Thereafter, epididymal sperm concentration and motility were determined, and histopathology of the testes was performed. Serum hormone levels including testosterone (T), luteinizing hormone (LH), and follicle stimulating hormone (FSH) were measured using corresponding specific enzyme-linked immunosorbent assay (ELISA) kits. Testicular mRNA expression profiles were determined by RNA sequencing analysis. These findings were validated by quantitative real-time PCR, western blotting and ELISA. Both PIN and DHS improved the epididymal sperm concentration and motility, enhanced testosterone levels, and promoted testicular morphological recovery following BUS treatment. PIN treatment was found to significantly reduce oxidative stress via the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE)-dependent antioxidant, glutathione peroxidase 3. DHS treatment significantly reduced oxidative stress via the Nrf2-ARE-dependent antioxidants glutathione S-transferase theta 2 and glutathione S-transferase omega 2. In summary, PIN and DHS ameliorated oligoasthenospermia in this mouse model by attenuating oxidative stress via the Nrf2-ARE pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI