Tunable Synthesis of N,C-Codoped Ti3+-Enriched Titanium Oxide Support for Highly Durable PEMFC Cathode

阴极 材料科学 电催化剂 质子交换膜燃料电池 氧化物 电化学 催化作用 锐钛矿 无机化学 化学工程 化学 物理化学 电极 冶金 有机化学 工程类 光催化
作者
Eungjun Lee,Changmin Park,Dong Wook Lee,Gibaek Lee,Hee‐Young Park,Jong Hyun Jang,Hyoung‐Juhn Kim,Yung‐Eun Sung,Yongsug Tak,Sung Jong Yoo
出处
期刊:ACS Catalysis 卷期号:10 (20): 12080-12090 被引量:46
标识
DOI:10.1021/acscatal.0c02570
摘要

The hydrogen economy expansion triggered studies on the durability of hydrogen-powered proton-exchange membrane fuel cells (PEMFCs), which revealed that their performance is largely hindered by the degradation of cathode support. Herein, Ti3+-enriched N,C-codoped mixed-phase TiO2 nanoparticles featuring a reduced (compared to that of pristine TiO2) band gap and containing Ti3+ ions, oxygen vacancies, and Ti–X bonds (X = O, OH, N, C) were synthesized as a durable PEMFC cathode support by annealing. The extent of doping was controlled by adjustment of dopant (urea) loading, while the abundance of defect sites resulted in an enhanced metal–support interaction (i.e., Pt–Ti bonding) for Pt/N,C-codoped TiO2, as confirmed by the shift of the most prominent Pt0 peak of Pt/N,C-codoped TiO2 to lower binding energies (by 0.96 eV) relative to that of Pt/C. Electrochemical performance testing of the above support revealed its high activity for the oxygen reduction reaction and elevated durability. In particular, a maximum power density decrease of only 4% (cf. 52% for Pt/C under the same conditions) and high durability under PEMFC operation conditions were observed in a single-cell test. Thus, the presented results highlight the great potential of TiO2 as an electrocatalyst support, paving the way to the fabrication of high-performance hydrogen fuel cells and contributing to the establishment of a hydrogen society.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Hu发布了新的文献求助10
刚刚
iu发布了新的文献求助10
刚刚
好了完成签到,获得积分10
1秒前
1秒前
怡然雨雪完成签到,获得积分10
1秒前
1秒前
科研通AI5应助李唯佳采纳,获得10
1秒前
万能图书馆应助祝雲采纳,获得10
1秒前
我爱学习完成签到 ,获得积分10
2秒前
111完成签到,获得积分10
2秒前
可乐要加冰完成签到,获得积分10
2秒前
深情安青应助郑开司09采纳,获得10
3秒前
娜行发布了新的文献求助10
3秒前
Auoroa完成签到,获得积分10
3秒前
明智之举完成签到,获得积分10
4秒前
赵赵完成签到,获得积分10
4秒前
共享精神应助lalala采纳,获得10
4秒前
Hello应助hf采纳,获得10
4秒前
4秒前
豆丁完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
鹿友菌完成签到,获得积分10
7秒前
皮克斯完成签到 ,获得积分10
7秒前
黑米粥发布了新的文献求助10
7秒前
iu完成签到,获得积分10
7秒前
脑洞疼应助KX采纳,获得10
7秒前
大模型应助艺玲采纳,获得10
8秒前
ZXD完成签到,获得积分10
8秒前
8秒前
丞诺完成签到,获得积分10
8秒前
Ricardo完成签到,获得积分10
9秒前
深情安青应助孔雀翎采纳,获得10
9秒前
10秒前
10秒前
端庄的萝完成签到,获得积分10
10秒前
平淡南霜完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672