Tunable Synthesis of N,C-Codoped Ti3+-Enriched Titanium Oxide Support for Highly Durable PEMFC Cathode

阴极 材料科学 电催化剂 质子交换膜燃料电池 氧化物 电化学 催化作用 锐钛矿 无机化学 化学工程 化学 物理化学 电极 冶金 有机化学 工程类 光催化
作者
Eungjun Lee,Changmin Park,Dong Wook Lee,Gibaek Lee,Hee‐Young Park,Jong Hyun Jang,Hyoung‐Juhn Kim,Yung‐Eun Sung,Yongsug Tak,Sung Jong Yoo
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:10 (20): 12080-12090 被引量:62
标识
DOI:10.1021/acscatal.0c02570
摘要

The hydrogen economy expansion triggered studies on the durability of hydrogen-powered proton-exchange membrane fuel cells (PEMFCs), which revealed that their performance is largely hindered by the degradation of cathode support. Herein, Ti3+-enriched N,C-codoped mixed-phase TiO2 nanoparticles featuring a reduced (compared to that of pristine TiO2) band gap and containing Ti3+ ions, oxygen vacancies, and Ti–X bonds (X = O, OH, N, C) were synthesized as a durable PEMFC cathode support by annealing. The extent of doping was controlled by adjustment of dopant (urea) loading, while the abundance of defect sites resulted in an enhanced metal–support interaction (i.e., Pt–Ti bonding) for Pt/N,C-codoped TiO2, as confirmed by the shift of the most prominent Pt0 peak of Pt/N,C-codoped TiO2 to lower binding energies (by 0.96 eV) relative to that of Pt/C. Electrochemical performance testing of the above support revealed its high activity for the oxygen reduction reaction and elevated durability. In particular, a maximum power density decrease of only 4% (cf. 52% for Pt/C under the same conditions) and high durability under PEMFC operation conditions were observed in a single-cell test. Thus, the presented results highlight the great potential of TiO2 as an electrocatalyst support, paving the way to the fabrication of high-performance hydrogen fuel cells and contributing to the establishment of a hydrogen society.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助YaHaa采纳,获得10
1秒前
滕可燕发布了新的文献求助10
1秒前
爆米花应助陈甜甜采纳,获得10
2秒前
摆烂小鱼鱼完成签到 ,获得积分10
2秒前
Lucas应助韩麒嘉采纳,获得10
2秒前
2秒前
2秒前
3秒前
Niuniu完成签到,获得积分10
3秒前
裴裴驳回了珏晴应助
3秒前
4秒前
4秒前
4秒前
4秒前
Aprilapple完成签到,获得积分10
4秒前
5秒前
song发布了新的文献求助10
5秒前
兴奋的发卡完成签到 ,获得积分10
6秒前
自觉翠安应助qiuxiali123采纳,获得10
6秒前
8秒前
hezhuyou完成签到,获得积分20
8秒前
飞乐扣完成签到 ,获得积分10
8秒前
buno应助屈昭阳采纳,获得10
8秒前
优美的觅珍完成签到,获得积分20
8秒前
冯佳祥发布了新的文献求助10
8秒前
aa发布了新的文献求助10
8秒前
852应助一只肥牛采纳,获得10
9秒前
lewis17发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
伯赏夜南发布了新的文献求助10
9秒前
orixero应助Niuniu采纳,获得10
9秒前
雪雪子完成签到,获得积分10
10秒前
10秒前
10秒前
胖狗完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
12秒前
Owen应助edtaa采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836