亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiple Axial Spine Indices Estimation via Dense Enhancing Network With Cross-Space Distance-Preserving Regularization

判别式 人工智能 正规化(语言学) 计算机科学 嵌入 基本事实 特征向量 深度学习 模式识别(心理学) 特征(语言学) 块(置换群论) 交叉验证 机器学习 数学 哲学 语言学 几何学
作者
Liyan Lin,Xi Tao,Shumao Pang,Zhihai Su,Hai Lü,Shuo Li,Qianjin Feng,Bin Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 3248-3257 被引量:9
标识
DOI:10.1109/jbhi.2020.2977224
摘要

Automatic estimation of axial spine indices is clinically desired for various spine computer aided procedures, such as disease diagnosis, therapeutic evaluation, pathophysiological understanding, risk assessment, and biomechanical modeling. Currently, the spine indices are manually measured by physicians, which is time-consuming and laborious. Even worse, the tedious manual procedure might result in inaccurate measurement. To deal with this problem, in this paper, we aim at developing an automatic method to estimate multiple indices from axial spine images. Inspired by the success of deep learning for regression problems and the densely connected network for image classification, we propose a dense enhancing network (DE-Net) which uses the dense enhancing blocks (DEBs) as its main body, where a feature enhancing layer is added to each of the bypass in a dense block. The DEB is designed to enhance discriminative feature embedding from the intervertebral disc and the dural sac areas. In addition, the cross-space distance-preserving regularization (CSDPR), which enforces consistent inter-sample distances between the output and the label spaces, is proposed to regularize the loss function of the DE-Net. To train and validate the proposed method, we collected 895 axial spine MRI images from 143 subjects and manually measured the indices as the ground truth. The results show that all deep learning models obtain very small prediction errors, and the proposed DE-Net with CSDPR acquires the smallest error among all methods, indicating that our method has great potential for spine computer aided procedures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助傻傻的海安采纳,获得10
4秒前
4秒前
寒冷白亦完成签到 ,获得积分10
5秒前
7秒前
8秒前
李健应助kei采纳,获得10
8秒前
9秒前
11秒前
研友_VZG7GZ应助聪明的如冬采纳,获得10
16秒前
18秒前
zrm完成签到,获得积分10
18秒前
懒癌晚期完成签到,获得积分10
21秒前
21秒前
momi发布了新的文献求助10
22秒前
23秒前
上官发布了新的文献求助10
24秒前
25秒前
深情安青应助无辜绿竹采纳,获得10
26秒前
27秒前
上官发布了新的文献求助10
28秒前
上官发布了新的文献求助10
29秒前
上官发布了新的文献求助10
29秒前
上官发布了新的文献求助10
30秒前
上官发布了新的文献求助10
30秒前
坦率凝琴发布了新的文献求助10
30秒前
kei发布了新的文献求助30
30秒前
woleaisa发布了新的文献求助10
31秒前
AdrielL关注了科研通微信公众号
31秒前
ding应助wy采纳,获得10
35秒前
啊哈哈哈哈哈完成签到 ,获得积分10
37秒前
AdrielL发布了新的文献求助10
41秒前
星点完成签到 ,获得积分10
44秒前
桐桐应助momi采纳,获得10
46秒前
48秒前
48秒前
48秒前
53秒前
53秒前
54秒前
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590314
求助须知:如何正确求助?哪些是违规求助? 4674693
关于积分的说明 14795069
捐赠科研通 4631138
什么是DOI,文献DOI怎么找? 2532671
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468599