Multiple Axial Spine Indices Estimation via Dense Enhancing Network With Cross-Space Distance-Preserving Regularization

判别式 人工智能 正规化(语言学) 计算机科学 嵌入 基本事实 特征向量 深度学习 模式识别(心理学) 特征(语言学) 块(置换群论) 交叉验证 机器学习 数学 哲学 语言学 几何学
作者
Liyan Lin,Xi Tao,Shumao Pang,Zhihai Su,Hai Lü,Shuo Li,Qianjin Feng,Bin Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 3248-3257 被引量:9
标识
DOI:10.1109/jbhi.2020.2977224
摘要

Automatic estimation of axial spine indices is clinically desired for various spine computer aided procedures, such as disease diagnosis, therapeutic evaluation, pathophysiological understanding, risk assessment, and biomechanical modeling. Currently, the spine indices are manually measured by physicians, which is time-consuming and laborious. Even worse, the tedious manual procedure might result in inaccurate measurement. To deal with this problem, in this paper, we aim at developing an automatic method to estimate multiple indices from axial spine images. Inspired by the success of deep learning for regression problems and the densely connected network for image classification, we propose a dense enhancing network (DE-Net) which uses the dense enhancing blocks (DEBs) as its main body, where a feature enhancing layer is added to each of the bypass in a dense block. The DEB is designed to enhance discriminative feature embedding from the intervertebral disc and the dural sac areas. In addition, the cross-space distance-preserving regularization (CSDPR), which enforces consistent inter-sample distances between the output and the label spaces, is proposed to regularize the loss function of the DE-Net. To train and validate the proposed method, we collected 895 axial spine MRI images from 143 subjects and manually measured the indices as the ground truth. The results show that all deep learning models obtain very small prediction errors, and the proposed DE-Net with CSDPR acquires the smallest error among all methods, indicating that our method has great potential for spine computer aided procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yan完成签到,获得积分10
刚刚
花花仔完成签到,获得积分10
刚刚
1秒前
1秒前
xu完成签到 ,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
Ys完成签到,获得积分10
3秒前
小鱼完成签到 ,获得积分10
3秒前
梦游天吟留别完成签到,获得积分10
4秒前
橘子发布了新的文献求助10
4秒前
WX发布了新的文献求助10
5秒前
will214完成签到,获得积分10
5秒前
黄桃罐头发布了新的文献求助10
6秒前
7秒前
科研通AI6应助gaomeigeng采纳,获得10
7秒前
yml完成签到 ,获得积分10
7秒前
8秒前
橘子完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
神奇海螺完成签到 ,获得积分10
10秒前
研友_VZG7GZ应助haifeng采纳,获得10
11秒前
12秒前
12秒前
12秒前
弘一发布了新的文献求助10
14秒前
宁戎发布了新的文献求助10
15秒前
16秒前
pp发布了新的文献求助10
17秒前
wjx发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
上官若男应助从容老四采纳,获得10
17秒前
FashionBoy应助G浅浅采纳,获得10
17秒前
palu完成签到,获得积分10
18秒前
18秒前
KYG12345完成签到,获得积分10
19秒前
杨扬完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409732
求助须知:如何正确求助?哪些是违规求助? 4527293
关于积分的说明 14110056
捐赠科研通 4441780
什么是DOI,文献DOI怎么找? 2437589
邀请新用户注册赠送积分活动 1429594
关于科研通互助平台的介绍 1407723