Multiple Axial Spine Indices Estimation via Dense Enhancing Network With Cross-Space Distance-Preserving Regularization

判别式 人工智能 正规化(语言学) 计算机科学 嵌入 基本事实 特征向量 深度学习 模式识别(心理学) 特征(语言学) 块(置换群论) 交叉验证 机器学习 数学 哲学 语言学 几何学
作者
Liyan Lin,Xi Tao,Shumao Pang,Zhihai Su,Hai Lü,Shuo Li,Qianjin Feng,Bin Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 3248-3257 被引量:9
标识
DOI:10.1109/jbhi.2020.2977224
摘要

Automatic estimation of axial spine indices is clinically desired for various spine computer aided procedures, such as disease diagnosis, therapeutic evaluation, pathophysiological understanding, risk assessment, and biomechanical modeling. Currently, the spine indices are manually measured by physicians, which is time-consuming and laborious. Even worse, the tedious manual procedure might result in inaccurate measurement. To deal with this problem, in this paper, we aim at developing an automatic method to estimate multiple indices from axial spine images. Inspired by the success of deep learning for regression problems and the densely connected network for image classification, we propose a dense enhancing network (DE-Net) which uses the dense enhancing blocks (DEBs) as its main body, where a feature enhancing layer is added to each of the bypass in a dense block. The DEB is designed to enhance discriminative feature embedding from the intervertebral disc and the dural sac areas. In addition, the cross-space distance-preserving regularization (CSDPR), which enforces consistent inter-sample distances between the output and the label spaces, is proposed to regularize the loss function of the DE-Net. To train and validate the proposed method, we collected 895 axial spine MRI images from 143 subjects and manually measured the indices as the ground truth. The results show that all deep learning models obtain very small prediction errors, and the proposed DE-Net with CSDPR acquires the smallest error among all methods, indicating that our method has great potential for spine computer aided procedures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
上官若男应助风中睫毛膏采纳,获得10
2秒前
cc应助cora采纳,获得20
2秒前
兜有米完成签到,获得积分10
3秒前
乐乐应助想人陪的向南采纳,获得10
3秒前
4秒前
干大事的小喽啰完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助30
5秒前
5秒前
syt完成签到,获得积分10
6秒前
歪比巴卜发布了新的文献求助10
6秒前
救命啊完成签到 ,获得积分10
7秒前
追寻听寒发布了新的文献求助10
7秒前
Blackmamba发布了新的文献求助10
8秒前
万能图书馆应助土星采纳,获得10
8秒前
白水完成签到,获得积分10
8秒前
10秒前
niuma发布了新的文献求助10
10秒前
科研通AI6应助木木三采纳,获得10
10秒前
喜欢看神仙打架完成签到 ,获得积分10
11秒前
黄大大发布了新的文献求助10
11秒前
领导范儿应助丝绒采纳,获得10
11秒前
12秒前
林木木完成签到,获得积分10
12秒前
12秒前
13秒前
14秒前
15秒前
yiqihunhun发布了新的文献求助10
15秒前
zhigaow完成签到,获得积分20
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
李爱国应助然然采纳,获得50
16秒前
林木木发布了新的文献求助10
16秒前
晚风cc发布了新的社区帖子
16秒前
Ya_Yen完成签到,获得积分10
16秒前
欢呼天问发布了新的文献求助10
17秒前
17秒前
可暖完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717982
求助须知:如何正确求助?哪些是违规求助? 5249617
关于积分的说明 15284035
捐赠科研通 4868135
什么是DOI,文献DOI怎么找? 2614009
邀请新用户注册赠送积分活动 1563957
关于科研通互助平台的介绍 1521400