Multiple Axial Spine Indices Estimation via Dense Enhancing Network With Cross-Space Distance-Preserving Regularization

判别式 人工智能 正规化(语言学) 计算机科学 嵌入 基本事实 特征向量 深度学习 模式识别(心理学) 特征(语言学) 块(置换群论) 交叉验证 机器学习 数学 哲学 语言学 几何学
作者
Liyan Lin,Xi Tao,Shumao Pang,Zhihai Su,Hai Lü,Shuo Li,Qianjin Feng,Bin Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 3248-3257 被引量:9
标识
DOI:10.1109/jbhi.2020.2977224
摘要

Automatic estimation of axial spine indices is clinically desired for various spine computer aided procedures, such as disease diagnosis, therapeutic evaluation, pathophysiological understanding, risk assessment, and biomechanical modeling. Currently, the spine indices are manually measured by physicians, which is time-consuming and laborious. Even worse, the tedious manual procedure might result in inaccurate measurement. To deal with this problem, in this paper, we aim at developing an automatic method to estimate multiple indices from axial spine images. Inspired by the success of deep learning for regression problems and the densely connected network for image classification, we propose a dense enhancing network (DE-Net) which uses the dense enhancing blocks (DEBs) as its main body, where a feature enhancing layer is added to each of the bypass in a dense block. The DEB is designed to enhance discriminative feature embedding from the intervertebral disc and the dural sac areas. In addition, the cross-space distance-preserving regularization (CSDPR), which enforces consistent inter-sample distances between the output and the label spaces, is proposed to regularize the loss function of the DE-Net. To train and validate the proposed method, we collected 895 axial spine MRI images from 143 subjects and manually measured the indices as the ground truth. The results show that all deep learning models obtain very small prediction errors, and the proposed DE-Net with CSDPR acquires the smallest error among all methods, indicating that our method has great potential for spine computer aided procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Frank完成签到,获得积分10
1秒前
钩子89应助飘逸楷瑞采纳,获得20
1秒前
安安发布了新的文献求助10
1秒前
窦长昕完成签到,获得积分10
2秒前
3秒前
Gra发布了新的文献求助10
3秒前
莫寻双完成签到,获得积分10
3秒前
冰糖胡芦发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
nimonimo发布了新的文献求助10
4秒前
大模型应助淀粉采纳,获得10
6秒前
7秒前
7秒前
8秒前
漂亮的毛巾完成签到,获得积分10
9秒前
曾子牧发布了新的文献求助10
9秒前
9秒前
MissingParadise完成签到 ,获得积分10
11秒前
LX发布了新的文献求助10
11秒前
13秒前
13秒前
CipherSage应助烂漫奇异果采纳,获得10
14秒前
15秒前
Gra完成签到,获得积分10
15秒前
16秒前
AziMez发布了新的文献求助10
18秒前
韦韦发布了新的文献求助10
18秒前
18秒前
18秒前
唠叨的若冰完成签到,获得积分10
19秒前
冰忆发布了新的文献求助10
20秒前
深情安青应助Haiyang采纳,获得10
20秒前
21秒前
21秒前
威仔完成签到,获得积分10
21秒前
hulakimir关注了科研通微信公众号
22秒前
小高同学完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951189
求助须知:如何正确求助?哪些是违规求助? 3496538
关于积分的说明 11083082
捐赠科研通 3227010
什么是DOI,文献DOI怎么找? 1784166
邀请新用户注册赠送积分活动 868234
科研通“疑难数据库(出版商)”最低求助积分说明 801089